AD-A258 900 -
HRERAEN

AFIT/GCS/ENG /92D-01

CREATING AND MANIPULATING FORMALIZED
SOFTWARE ARCHITECTURES TO SUPPORT A
DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

THESIS
Cynthia Griffin Anderson -

Captain, USAF D T l

AFIT/GCS/ENG/92D-01 _ SL_ECTE?}
ANO 7 1993 [

g B =

Approved for public release: distribution unlimited

93 1 04 163

|

AFIT/GCS/ENG/92D-01

CREATING AND MANIPULATING FORMALIZED
SOFTWARE ARCHITECTURES TO SUPPORT A
DOMAIN-ORIENTED APPLICATION
COMPOSITICN SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science (Computer Systems)

Cynthia Griffin Anderson, B.S.C.S.
Captain, USAF

December, 1992

Approved far public release; distribution unlimited

Preface

This research was part of an effort to develop a technology which will allow sophis-
ticated end-users to formally specify and compose software applications using domain-
oriented, rather than programming-oriented, terms. Ultimately, such a technology will
enable users to compose applications to suit their requirements, to execute prototypes of
these composed applications to verify that they behave as expected/desired and, then, to
automatically generate efficient software code to satisfy the original requirements. This
thesis investigated the role of software architectures in the development of such an appli-
cation composition system which has been named Architect. I hope that the Architect
system implemented herein will prove to be a useful starting point in achieving the overall

research goal of developing a full-scale application generation system.

I wish to thank my committee members, Majors Gregg Gunsch and Dave Luginbuhl,
for their incisive comments on the draft of this document. A special thanks goes to my
thesis advisor, Major Paul Bailor, whose wisdom, advice, encouragement and confidence
in me made this thesis possible. I also wish to thank the other members of the formal

methods research group, especially Mary Anne Randour who eagerly shared her wealth of
REFINE expertise with all of us.

But most of all, I want to thank my husband and best friend, Andy, for his patience,
support, understanding, and encouragement throughout this AFIT program and in all my

endeavors.

Cynthia Griffin Anderson

Accession For Y

DTIC TAB
Unannounced
pTIC QU4 7T INCPECTED 1 Justification

NTIS GRA&I o
a
a

By

Distribution/
L vlatsibutions

Avail andlor
ii Dtat Speo tal

Y
. vvvr‘,éi

Availabll 1ty Codes

Table of Contents

Page

Preface @ . . e e e e e e il
Tableof Contents i i it i i ittt i e et e iii
Listof Figures i ittt eee ix
Listof Tables o i i i e e e e e e e e xi
Abstract e e e e e e e e e e xii
L Introduction e e e 1-1
11 Background 1-1

1.2 Problem e 1-4

1.2.1 Problem Statement 1-4

1.3 Scope . . - o e e e e e e e e e e e 1-6

1.4 Sequence of Presentation 1-6

IL Survey of Current Literature 2-1
2.1 Imtroduction 2-1

2.2 Description of Software Architectures 2-1

2.3 Developing Software Architectures 2-5

2.4 Examples of Software Architecture Use 2-7

2.4.1 US Army Information Systems Engineering Command 2-7

2.4.2 Object-Oriented Design (OOD) Paradigm 2-7
2.4.3 Feature-Oriented Domain Analysis (FODA) 2-7
2.4.4 Hierarchical Software Systems. 2-7

2.4.5 Flight Dynamics Division (FDD) of the Goddard Space
Flight Center 2-9

iii

Page
2.4.6 Command Center Processing and Display System Re-

placement (CCPDS-R). 2-9

25 Conclusion 0. 2-10
ITI. Requirements Analysis 31
3.1 Imtroduction, ... 31
3.2 Operational Concept 3-2
3.3 General System Concept 3-4
331 Overview00, 3-4

3.3.2 Developing a Formalized Domain Model 3-6

3.3.3 Building A Structured Object Base 3-9

3.3.4 Composing Applications 3-12

3.3.5 Extend TechnologyBase. 3-13

3.3.6 \Visualization 3-14

34 RelatedResearch 3-14

3.4.1 Hierarchical Software Systems With Reusable Compo-
BenES e e e e e e e e e e 3-14

3.4.2 Automatic Programming Technologies for Avionics Soft-

WATE . . v v v v it e e e e e e e e e e e e e e e 3-17

3.4.3 Model-Based Software Development 3-20

3.4.4 Extensible Domain Models 3-22

3.5 Specific System Concept 3-23
3.5.1 SystemOverview 3-23

3.5.2 SoftwareRefinery. 3-25

3.5.3 Object-Connection-Update Model 3-27

36 Conclusion 3-29

iv

Iv.

V.

Software System Design Overview
4.1 High-Level System Design

411 DesignGoals

4.1.2 Concept of Operations

4.1.3 Software System Design

4.2 Preliminary Design of the Application Composer

4.2.1 Reviewofthe OCUModel

4.2.2 Adapting the OCU Model for this Implementation .

4.3 Goals/Objectives for the Application Composer Implementation
4.4 Conventions Used in this Implementation
4.4.1 Conventions For the Software Engineer
4.4.2 Conventions for the Application Specialist
4.5 Data Structures to Support this Implementation
4.6 SUMMATY - . . ¢ & v v v et e e e e e e e e e e
Detailed Software Design
5.1 Preprocess the Application
5.1.1 Building Import and Export Areas
5.1.2 Determining the Source for Imports
5.1.3 Import/Export Considerations
5.1.4 Determining the Source of Variables in Conditions .

5.1.5 Considerations for Variables in Conditional Expressions
5.2 Perform Semantic Checks
5.2.1 Architecture Semantic Checks
5.3 Simulate Execution.
53.1 Callstatements
53.2 IfStatements
5.3.3 While Statements
54 Summary e e e e

v

Page
4-1

4-1

4-2
4-4
4-7
4-8
4-10
4-13
4-14
4-15
4-15
4-15

4-16

5-1
5-1
5-2
5-4
5-6
5-9
5-10
5-11
5-12
5-18
5-20
5-22
5-22

5-23

Page
VI. Validation Domain, 6-1
6.1 Background e 6-1
6.2 Logic Circuit Domain e e 6-1
6.2.1 Domain Analysis-PartI D 6-2
6.2.2 Domain Analysis—PartII. 6-6
6.2.3 Domain Analysis— Part IIT 6-8
6.3 Summary of Results for the Logic Domain \ \6-11
64 Conclusions i e (\i\-ll
VII. Conclusions and Recommendations 7-1
7.1 Summary of Accomplishments 7-1
72 Conclusions 71
7.3 Recommendations for Further Research 7-4
7.4 Final Comments 7-6
Appendix A. Requirements for Specifying Primitive Objects A-1
A.1 Primitive Object Definition Template A1l
A1l INPUT-DATA A-2
A12 OUTPUT-DATA A-2
A1l3 COEFFICIENTS A-3
A.l4 UPDATE-FUNCTION. A-4
A.1.5 Attributes, Current_State, Constants A-4
A.16 Miscellaneous A-4
Appendix B. Guide to Using the Application Composer B-1
B.1 GettingStarted. B-1
B.2 Using the Application Composition System B-2
B.3 “Compile-And-Load” File for the Application Composition Sys-
tem e e e e B-3

vi

Appendix C.
C.1

C.2

C3

C4

C.5

Appendix D.
D.1
D.2
D.3
D4
D5

Page

Validation Test Cases and Results C-1
Decoder Test C-2
C.1.1 Circuit Diagram C-2
C.1.2 Application Specification - Test 1 C-2
C.1.3 System/User Dialogue~Test1 C-6
Full Adder Test C-14
C.21 CircuitDiagram C-14
C.2.2 Application Specification C-14
C.2.3 System/User Dialogue C-15
BCDAdder C-19
C.3.1 Circuit Diagram C-19
C.3.2 Application Specification C-19
C.3.3 System/User Dialogue C-23
2 x 2 Binary Array Multiplier C-33
C4.1 Circuit Diagram C-33
C.4.2 Application Specification C-33
C.4.3 System/User Dialogue C-35
Universal Shift Register C-39
C.5.1 Circuit Diagram C-39
C.5.2 Application Specification C-39
C.5.3 System/User Dialogue C-41
Code i it D-1
Globals Definitions D-1
REFINE Domain Model D-1
OCUGrammar v v v v v vttt e e e oo oo D-7
Imports-Exports D-10
Semantic-Checks, . D-23

vii

Page

D6 Execute e e D-36

D.7 Eval-Expr e, D-41

Appendix E. Technology Base for the Logic Circuit Domain E-1
El And-Gate E-1

E2 Or-Gate E-2

E.3 Nand-Gate iunenenen.. E-4

E4 Nor-Gate E-5

E5 Not-Gate, E-7

E6 JK-Flip-Flop E-8

E7 switch e E-10

E8 LED e E-11

E9 Counter, E-13
El0Half-Adder E-15
EidlDecoder ittt E-16

E12MUX . . . e E-19

Vita . .o e e e VITA-1
Bibliography e BIB-1

viii

Figure

1.1.

1.2

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

3.7.

4.1.
4.2.
4.3.

4.4.

5.1.
5.2.
5.3.
5.4.

List of Figures

Software Development Trends

Domain-Specific Software Application Composition Methodology .

Filtersand Pipes
Data Abstraction,
Layered Systems e
Rule-Based Systems00 iiiini..
Blackboard Systems
OOD Paradigm for a Flight Simulator

General System Overview

Domain Model Instantiation

OCU Subsystem Construction

Overview of Specific System

System Operations,
System Structure e
REFINE Object Class Hierarchy

Object Class Attribute Maps

Preprocess Application
Build Import/Export Areas
Determine Import Sources - Part 1

Determine Import Sources - Part2

ix

Page

1-2

1-5

3-3
3-5
3-8
3-15
3-18
3-21

3-24
4-2
4-17
4-18
5-1

5-3

5-5

Figure Page
5.5. SemanticChecks 0. 5-12
5.6. Execute Application 5-19
5.7. Primitive Object Update Execution 5-20
5.8. SetFunction Execution 5-21
5.9. SetState Executiono, 5-22
A.l. Standard Primitive Object Definition A-1
B.1. Compilation Order for Simplified Application Composer System B-4
C.1. 3-to-8 Line Decoder (Subsystem) C-3
C.2. 3-to-8 Line Decoder (Primitive) C-4
C3. Full Adder i e C-14
C4. BCD Adder. i i e C-20
C.5. 2 x 2 Binary Array Multiplier C-34
C.6. Universal Shift Register, C-39

X

Table

3.1.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

C.1.
C.2.

List of Tables

Page
Analogyto Grammar 0. 3-16
Truth Table - NANDgate 6-4
Truth Table-NOR gate 6-4
Truth Table - JK FLIP-FLOP R-5
Truth Table — 3-to-8 Line Decoder 6-9
Truth Table - Half Adder 6-19
Truth Table — 4-Input Multiplexer 6-10
Summary of Validation Results 6-11
BCD/Binary Comparisono v vt it C-19
Universal Shift Register Controls C-39

AFIT/GCS/ENG/92D-01

Abstract

This research investigated technology which enables sophisticated users to specify,
generate, and maintain application software in domain-oriented terms. To realize this new
technology, a development environment, called Architect, was designed and implemented.
Using canonical formal specifications of domain objects, Architect rapidly composes these
specifications into a software application and executes a prototype of that application as
a means to demonstrate its correctness before any programming language specific code
is generated. Architect depends upon the existence of a formal object base (or domain
model) which was investigated by another student in related research. The research de-
scribed in this thesis relied on the concept of a software architecture, which was a key
to Architect’s successful implementation. Various software architectures were evaluated
and the Object-Connection-Update (OCU) model, developed by the Software Engineering
Institute, was selected. The Software Refinery environment was used to implement the
composition process which encompasses connecting specified domain objects into a com-
posed application, performing semantic analysis on the composed application, and, if no
errors are discovered, simulating the execution of the application. Architect was validated
using both artificial and realistic domains and was found to be a solid foundation upon

which to build a full-scale application composition system.

Xii

CREATING AND MANIPULATING FORMALIZED SOFTWARE
ARCHITECTURES TO SUPPORT A DOMAIN-ORIENTED
APPLICATION COMPOSITION SYSTEM

1. Introduction

1.1 Background

A “software crisis” is upon us, characterized by expensive, often late, often unreliable
and difficult to maintain systems which seldom meet all their requirements (6:7-8). As
computer hardware becomes more powerful and significantly less expensive, it becomes
possible to find automated solutions to more and more problems (6:8). These formerly
marginal application areas often require very large, very complex software systems and
“software entities are more complex for their size than perhaps any other human con-
struct;... many of the classical problems of developing software products derive from this
essential complexity and its non-linear increases with size” (9:11). As if this weren’t bad
enough, trends indicate a widening gap between the productivity of an insufficient number
of computer professionals and the demand for their services, as illustrated in Figure 1.1
(6:10). Clearly, something must be done to improve quality and increase productivity in

the software development process.

One technique touted to achieve these quality and productivity improvements is
software reuse. In terms of the software development process, “reuse is very simply any
procedure that produces (or helps produce) a system by reusing something from a previous
development effort” (15:2). But to obtain its maximum benefits, software reuse should be
a “process of reusing software that was designed to be reused” (3:ix). This distinction is
important as it implies a more systematic, formal approach whose primary objective is
to create reusable software components, not develop them as an accidental by-product.

Systematic reuse, most notably design reuse, offers the promise of decreasing overall soft-

1-1

25

g' 20— Demand (12% Hr)
x L
2
g 15—
&
(] -
2 Productivity (4% A1)
8 1~°:—__//"
% Parsonnel (4% A)
§ ol
&
m -
AT N T N S T G
1580 1882 1954 1986 1988 1990

Figure 1.1. Software Development Trends

ware development costs, improving maintainability, increasing understandability, reducing

complexity and improving reliability (17).

Traditional engineering disciplines have long recognized and successfully employed
reuse of design products. They benefit from large bodies of scientific knowledge, which over
the years, have been codified into models (12). These models act as reusable templates from
which to construct practical, working solutions to problems in a specific engineering area.
For example, “automotive engineers have models of cars, civil engineers have models of
bridges, mechanical engineers have models of rolling mills, electrical engineers have models
of motors...” (12:140). The engineer is trained to understand these models, to recognize
which model will solve a particular problem, and to adapt the model, if necessary, to fit
a specific application. He also knows that proper usage of the appropriate model will

produce the desired result even before he attempts to build the actual object.

Software engineering is a relatively new discipline which is just now beginning to
codify its body of knowledge. Unlike other engineering disciplines, it does not currently
rely on models as a means of designing working solutions. Instead, each new problem is
treated in isolation, as a unique situation requiring a completely unique solution. D’Ippolito

maintains that “models can do for the software industry what they have done before and

1-2

continue to do for the main-line engineering professions” (11:258). That is, they can provide
“reuse at the design level, reduced system complexity, a means to measure project risk,
reduced coding costs, reduced testing costs, reduced documentation costs, and increased

maintainability and enhanceability” (11:258).

We can think of a model as an architecture or a blueprint for building something.
When computer scientists discuss computer hardware, they implicitly or explicitly refer-
ence its structural composition, its schematic diagram, its architecture. The concept of an
architecture for computer hardware is clearly understood in the computer science commu-
nity; the term is now being applied to computer software as well. A software architecture
is “the high-level packaging structure of functions and data, their interfaces and control, to
support the implementation of applications in a domain” (20:3). More simply, it describes
the components which constitute a software system and how those components are con-
nected (a more precise definition of the term “component” will be presented in Chapter
3). If the needed components already existed in a library and if the appropriate compo-
nents could be easily identified, retrieved, and connected, reliable software systems could

be designed and implemented very quickly.

The Software Architectures Engineering (SAE) Project at the Software Engineering
Institute, an affiliate of Carnegie-Mellon University, is researching the feasibility of such
a process, which they have named “model-based software development” (24). In this
context, a model may be thought of as a set of software components or modules, each
performing a well-defined operation or function. In traditional engineering disciplines,
the models and the rules for combining them are stored in public technology bases where
they are readily available to anyone who wants to use them (24:7). The SAE project
seeks to develop such a technology or knowledge base for various software application
areas and domains. Developers of new software systems in these specific domains will
be able to choose appropriate components from the knowledge base and combine those
components using appropriate connection rules (also in the knowledge base) to create a

software architecture which represents the desired software system.

1-3

1.2 Problem

As in the traditional engineering disciplines (where, for example, automotive engi-
neers design automobiles, not bridges or airplanes), model-based software development is
likely to be conducted within a particular domain or application area. To make it a real-
ity, there must be a set of readily-available software components, a way for the software
developer to quickly and easily select the components required to construct his particular
application, and a means to compose those components in a meaningful way to produce
the desired application. An obvious approach to this problem would be to develop an

automated system to assist in this process. To do so,

e there must be a formal description (both in human- and machine-understandable
terms) of the available components,

e there must be a formal definition of the software architecture or framework into which
the components can be placed, and

o there must be a method by which the software developer can specify the application
that he wants to create.

Figure 1.2 provides a simplified illustration of a domain-specific application compo-
sition system. A domain analysis, conducted by experts in the application area, provides
the basis for identifying and constructing a set of appropriate domain-specific compo-
nents. A generalized software architecture provides the basis for developing an architec-
ture customized for the domain. A domain-specific language allows the software developer
to specify, in domain-oriented terms, the desired application which is constructed using
the domain-specific architecture and appropriate domain components from the technology

base.

1.2.1 Problem Statement

Develop a formalized model of a software architecture and implement it within
a domain-specific application composition system.

1-4

Formal Model

ofa Domain
Generalized Analysis
Software Architecture

4 K X 7

Formalized ' _.
Domain-Specific Domain-Specific
Software Architecture Components

Technology Base

Application
System

Figure 1.2. Domain-Specific Software Application Composition Methodology

1-5

1.3 Scope

This research effort focuses on formalizing an appropriate software architecture and
implementing it within a domain-specific application composition system. The implemen-
tation will enforce the rules of composition established by the software architecture model
and simulate the behavior of the composed application, using formal specification technol-
ogy. This enables the developer to verify that the system behaves as intended before it is

actually coded (with automated assistance) in an implementation language such as Ada.

There are many additional elements of a useful and usable application composition
system; several related research efforts are currently underway at the Air Force Institute of
Technology to address them. Most notably, Captain Mary Anne Randour has developed a
language with which the software developer can formally specify his application in domain-
oriented (rather than programming-oriented) terms (33) and Lieutenant Timothy Weide

is developing a visual interface to facilitate application specification and composition (44).

1.4 Sequence of Presentation
The remainder of this thesis is organized as follows:

Chapter II provides a review of the available literature concerning software architec-

tures.

Chapter III describes the application composition system of which this thesis effort

is a part. It serves as a requirements analysis.

Chapter IV presents an overview of the design of the application composition system
introduced in Chapter IIl and discusses the specific software architectural model which

was used as its foundation.

Chapter V explains the detailed design of the application composer implemented

during this research effort.

Chapter VI demonstrates how the application composer was used to compose mean-

ingful applications within a specific domain.

1-6

Chapter VII contains conclusions about the work described herein and presents rec-

ommendations for further research.
Several appendices provide additional information for the interested reader.
Appendix A serves as a primer for formally describing architectural components.

Appendix B summarizes detailed, background knowledge about executing the appli-
cation composer which may be needed by follow-on researchers as they strive to extend

the system.

Appendix C displays sample composed applications for the domain discussed in

Chapter VL

Appendix D contains the application composer’s domain-independent source code.
p

Appendix E contains the domain-specific technology base for the system’s validating

domain.

1-7

II. Survey of Current Literature

2.1 Introduction

“Architecture” is a common and well-understood term when applied to computer
hardware. Even people who are newly acquainted with computer science have assimilated
the concept of a computer architecture with a mental image of boxes representing the CPU,
main memory, I/O devices, etc., connected by data and address buses. When computer
scientists discuss computer hardware, they implicitly or explicitly reference its structural
composition, its schematic diagram, its architecture. To them, the term “architecture”
is synonymous with structure, organization, and how components are connected together.

Now the term is being used to describe software as well.

This chapter surveys software architectures in the literature. What are they? How
are they developed? How have they been successfully used? This survey is not limited to
a particular time period, although serious interest in the topic appears to have begun in

the mid 1980s.

2.2 Description of Software Architectures

The American Heritage Dictionary defines architecture as “a style and method of
design and construction.” In Model-Based Software Development, an architecture is “a
selection, from a technology base, of models and composition rules that defines the struc-
ture, performance, and use of a system relative to a set of engineering goals” (24:8), where
a model is simply “reusable engineering experience” (24:2). Kang defines a software archi-
tecture as “the high-level packaging structure of functions and data, their interfaces and
control, to support the implementation of applications in a domain” (20:3) and a domain
as “a set of current and future applications which share a set of common capabilities and
data” (20:3). As referenced by Lane, Shaw expands the concept of a software architecture
with this definition: “the study of large scale structure and performance of software sys-
tems” (22:1). Clearly, all these definitions have “structure” in common; in its most general

form, then, a software architecture somehow represents the structure of a software system.

It is human nature to be confused and uncomfortable with complexity. Developing
ever larger and more complex software systems leads to problems describing the system-
level design; i.e., the kinds of modules used in the system and how those modules are
connected. This system-level design or software architecture level “requires new kinds
of abstractions that capture essential properties of the major subsystems and the ways
they interact” (38:143). Abstraction is a process which allows us to reduce or manage
complexity. extracting only essential elements or qualities from the actual physical object
or concept and ignoring non-essential details. Software architectures provide a means for

describing these abstractions.

There are many similarities in the way existing software systems are organized or
structured. These common architectures can be grouped into the following broad categories

(38:143-4):

1. Pipes and Filters: Each module receives inputs and transforms those inputs in some
meaningful way into outputs, which then become the inputs of another module. Mod-

ules are connected when the output of one module serves as the input to another.

Figure 2.1. Filters and Pipes

2-2

2. Data Abstraction: Each module represents an object and its associated operations.
The connections in this type of architecture represent one object invoking another

object’s operation. This approach is also known as object-ariented design.

Figure 2.2. Data Abstraction

3. Layered Systems: The system is organized hierarchically, with each layer providing
services to the layer above, while receiving services from the layer below. This is a

common architecture for operating systems.

Basic Utility

Core

Level

Users

Figure 2.3. Layered Systems

2-3

4. Rule-Based Systems: A computational mechanism sequentially applies a collection
of applicable rules from a knowledge base. Each rule specifies the condition under

which it can be executed and the action that will be taken when it does execute.

Knowledge Base

Rule Fact

Figure 2.4. Rule-Based Systems

5. Blackboard Systems: A central data structure (representing the state of the compu-
tation) is surrounded by independent processes which check its status and execute if

they can further the calculation and/or enable another process to execute.

Blackhoard
(sharea data)

Hi N

Figure 2.5. Blackboard Systems

Although these basic architectures provide meaningful abstractions to help us grasp
how systems are structured and can be used to describe a wide variety of software systems,
they are currently used only informally, are not widely understood, and are not systemati-
cally taught to computer professionals (38:144). This is unfortunate because architectural

analysis can support reuse of software development products by focusing attention on the

2.4

high-level design or system framework and by increasing understanding of the relationship
between system organization and system behavior (29:125). To obtain the maximum ben-
efits offered by software architectures, certain information about components and connec-
tions must be available. Such information includes informal descriptions, abstract models,
syntax, semantics, evaluation criteria, engineering considerations, etc. (38:145). Difficul-
ties in identifying, codifying and disseminating this architectural information have kept

software architectures from being used more extensively (38:145).

2.3 Developing Software Architectures

In 1988, Shaw wrote: “identifying and classifying system functions that are common
to many applications is a significant first step to the development of software architectures”
(38:145). However, by 1990, she had come to agree with other researchers (1, 17, 43) that
domain-specific architectures would likely lead to more reuse and now feels that we must
start by identifying and classifying system functions that are common to a particular
domain (29:123).

One approach to identifying system functions is domain analysis. Arango quotes
Neighbors: “a domain analysis is an attempt to identify the objects, operations and re-

lationships between what domain experts perceive to be important about the domain”

(1:153). Arango divides domain analysis into two phases (1:153):

1. Conceptual analysis - the identification and acquisition of information needed to
specify the system.

2. Constructive analysis - the identification and acquisition of information needed to
implement the system.

Because most domains are quite stable, Arango advocates using “practical domain
analysis methods” which incrementally augment or refine existing domain knowledge based
on studies by domain experts and analysis of documentation from similar existing systems
(1:159).

Feature-oriented domain analysis (FODA) is one approach to domain analysis whose

primary goal is to make domain products reusable (20:47). A domain model describes

2-5

the problems within a domain which can be solved with software systems; it defines the
problem space and is analogous to Arango’s conceptual analysis phase. A domain model
is “a definition of the functions, objects, data and relationships of a domain” (20:3). The
domain modeling component of FODA consists of three activites: feature analysis, entity-
relationship modeling and functional analysis (20:35). Feature analysis identifies the fea-
tures (user-visible characteristics) of the domain, then abstracts and formally describes
them. The entity-relationship model captures and defines domain knowledge by identi-
fying entities and their relationships and classifying these entities into homogenous sets
(20:41). Presumably, features map to entities in some way. Finally, the functional analysis

identifies commonalities and differences between applications within the domain (20:42).

A second aspect of FODA is the architectural model. It provides a software solution
to the problems defined in the domain modeling phase (20:47); it defines the solution
space and is analogous to Arango’s constructive analysis phase. Architecture modeling
concentrates on identifying the processes and domain-specific modules required to satisfv
the solution and allocating the features, functions, and data objects defined in the domain
model to these processes and modules (20:47). For maximum flexibility and adaptation
to future changes, a layered architecture is used as it allows the system to be viewed
from various levels of abstraction and encourages reuse at the appropriate level for each

application. More productivity is achieved through reuse at the higher design levels (20:50).

Classifying system functions or architectural components presents a major challenge.
To be effective, any classification scheme must be consistent (the same item is classified
the same way every time), expressive (able to communicate all required information),
and understandable (14:303). Classification methods, which are heavily oriented toward

indexing into very large libraries include (14):

1. enumerated classification - the domain is divided into successively narrower classes
in a rigid tree-structured hierarchy.

2. faceted classification - the domain is divided into its eleinental classes or facets.
Components in the domain are described by combining these basic classes in a more
flexible structure than is possible with the enumerated scheme.

2-6

2.4 Ezamples of Software Architecture Use

There are several examples of the successful application of software architectures.

2.4.1 US Army Information Systems Engineering Command Softech, Inc analyzed
seven typical Combat Service Support systems for the US Army to evaluate whether any
functions were common to multiple applications and discovered that every application in-
cluded an inventory management function (37:16). They constructed a generic architecture
for that function and coded it using Ada language packages, tailoring the packages to each
application, as necessary. Although the applications differed significantly (i.e., personnel,
logistics, etc.), the generic architecture allowed the inventory function to be treated as a
single entity and to be reused across seven application areas. This study demonstrated the
feasibility of reusing software components and, to some extent, higher-level designs across

several different application areas (37).

2.4.2 Object-Oriented Design (OOD) Paradigm The Software Engineering Insti-
tute, while working on the Ada Simulator Validation Program, has developed a model or
architecture for a flight simulator (23). Each real-world component of an airplane (engine,
electrical system, fuel system, etc.) is represented as an object and encapsulated as a sys-
tem. Communication among the systems is accomplished via connection modules which
provide the only interface between the systems and their environment. See Figure 2.6.
The architecture provides a means to systematically specify objects, systems, and their
connections and encourages consistent implementation (23:41), which results in better un-
derstandability and improved maintainability. Although originally proposed as a model
for a flight simulator only , this architecture has been used to represent an elevator system

(40), a cruise control system (40), and an electrical system (7), among others.

2.4.3 Feature-Oriented Domain Analysis (FODA) Kang and others used the com-
plete FODA methodology to successfully develop a window management system (20).

2.4.4 Hierarchical Software Systems. A layered or hierarchical architecture is the

foundation of research conducted at the University of Texas. Analysis of two unrelated

2-7

Flight_Executive

e

ight_| Executrve Connections Engine_System Electrical_System Fuel_System

Engine_System_Aggregate Engine_System_Connections

Sk

Roton oM Hotor2 oM Bumer OM Bleed Valve oM Dmuser OM Fan Duc1 oM Exhaust oM Engine_ Ces-

=)£] £] £] £] £] £] =]

OM = Object_Manager

Figure 2.6. OOD Paradigm for a Flight Simulator

2-8

projects (GENESIS and Avoca) revealed striking similarities in design and organization (5).
Based on those similarities, a model was developed which uses sets of “plug-compatible and
interchangeable” (5:3) components and provides a straight-forward means to indicate how
the components are connected to create a system (via composition rules which provide the
“guidelines by which components can be glued together” (5:4)). This approach encourages
component reuse and provides a standardized design process which can be used to create
systems very quickly; one database management system was designed, composed and im-
plemented within 20 minutes (5:2). Batory and O’Malley assert that hierarchical designs
can be used for a wide range of application areas (even some real-time, performance-driven
applications where other layered designs have resulted in slow implementations (5:36)); as
an example, their method is currently being used to design an upgrade to the Mach oper-

ating system (5:40).

2.4.5 Flight Dynamics Division (FDD) of the Goddard Space Flight Center The
FDD has been very successful using a modified version of the General Object-Oriented
Design (GOOD) methodology to develop various simulators. They rely heavily on three
concepts from GOOD: abstraction, inheritance and domain-specific architectures (41:278).
The Upper Atmosphere Research Satellite Telemetry Simulator (UARSTELS) benefitted
from several lessons learned from past development efforts. Instead of using a highly nested
architecture which was found to greatly increase compilation overhead, a non-nested archi-
tecture of Ada generic packages was used (41:282). The Generic Dynamics and Telemetry
Simulator (GENSIM) used an object-oriented design and an architecture very similar to the
SEI Flight Simulator (minus the connection modules). Significant lessons learned by FDD
from these projects include the fact that high compilation overhead is caused by kighly
nested architectures, the advantage of using an object-oriented design approach, and the
importance of building domain components before developing an architecture (according

to the authors, this provides more potential for reuse across multiple architectures) (41).

2.4.6 Command Center Processing and Display System Replacement (CCPDS-R)
TRW used a Software Architecture Skeleton (SAS) to provide a software structure which

“identifies all top-level executable components, all control interfaces between these compo-

nents and all type definitions and data interfaces between these components” (36:503). The
components are part of the Network Architecture Services (NAS) which “provides the ob-
jects and operations needed to construct robust real-time networks which support flexible,
open architectures” (36:501). The use of SAS and NAS resulted in a “top-level software
architecture definable in terms of standard system building blocks with well-defined be-
havior and interfaces and eliminates a major source of errors which come in executive
logic control” (36:502). “The ability to rapidly construct a working system and focus on
real application interfaces rather than system software inconsistencies coupled with NAS
extensive support software and instrumentation resulted in an extremely successful effort”

(36:514).

2.5 Conclusion

Shaw recognized that successful software designs can be grouped into broad, general
categories, each representing a distinct software architecture. Several researchers, including
Shaw, are convinced that the use of domain-specific architectures will lead to more reuse
at the design level which should substantially increase reliability and reduce development
costs for new software systems. The experiences of Softech with the U.S. Army, the SEI
with their flight simulator model and the FODA methodology, Batory and O’Malley’s hier-
archical systems, the FDD at Goddard Space Flight Center with the GOOD methodology
and TRW with CCPDS-R suggest that software architectures can facilitate development

of large, complex systems.

2-10

III. Requirements Analysis!

8.1 Introduction

The wide availability of powerful, relatively low-cost computer hardware has led to an
explosion in the demand for computer software products to automate a multitude of new
tasks. Using traditional methods, computer scientists and programming professionals have
been unable to meet, in a timely manner, this demand for the sophisticated, large-scale,
reliable software systems required for these new applications. Clearly, a new approach to

software design and construction is needed.

Software engineering will evolve into a radically changed discipline. Soft-
ware will become adaptive and self-configuring, enabling end users to specify,
modify and maintain their own software within restricted contexts. Software
engineers will deliver knowledge-based application generators rather than un-
modifiable application programs. These generators will enable an end user
to interactively specify requirements in domain-oriented terms.... and then
automatically generate efficient code that implements these requirements. In
essence, software engineers will deliver the knowledge for generating software
rather than the software itself.

Although end users will communicate with these software generators in
domain-oriented terms, the foundation for the technology will be formal repre-
sentations... Formal languages will become the lingua franca, enabling know-
ledge-based components to be composed into larger systems. Formal specifica-
tions will be the interface between interactive problem acquisition components
and automatic program synthesis components.

Software development will evolve from an art to a true engineering dis-
cipline. Software systems will no longer be developed by handcrafting large
bodies of code. Rather, as in other engineering disciplines, components will
be combined and specialized through a chain of value-added enhancements.
The final specializations will be done by the end user. KBSE (Knowledge
Based Software Engineering) will not replace the human software engineer;
rather, it will provide the means for leveraging human expertise and knowledge
through automated reuse. New subdisciplines, such as domain analysis and de-
sign analysis, will emerge to formalize knowledge for use in KBSE components.
(26:629-630)

'This chapter was co-written with Captain Mary Anne Randour. It is included in AFIT Technical
Report AFIT/EN/TR-92-5 and also appears in (33).

3-1

Perhaps this vision can become a reality for selected domains, not just within the
next century as Michael Lowry predicts, but within the next few years. Research is cur-
rently underway at the Air Force Institute of Technology (AFIT) to achieve such a reality.
Developing a full-scale application generation system, which is capable of automatically
producing efficient code to satisfy user-specified requirements presented in domain-oriented
terms, is a considerable task which will require several man-years of effort. However, one
element of application generation, the combining or composing of required components into
the proper framework or architecture, is attainable in the near term. This chapter explores
the issues involved in developing such an end-user application composer and describes one

possible methodology for accomplishing it.

3.2 Operational Concept

Several roles are discussed in describing this new approach to software development,
an approach where the end-user generates a software application to satisfy his requirements
using the software professional’s knowledge about how to generate such applications. Some
of these roles are new, others are relatively unchanged from those in traditional software

system development.

1. System Analyst — Specifies new systems in a domain (20:4). Responsible for develop-
ing the concept of operations (defining policy, strategy, and use of application) and
defining training requirements (10).

2. System Engineer — Works with the system analyst to partition the system into sub-
systems and assigns the tasks to software or hardware development, as appropriate
(2).

3. Domain Engineer - Possesses detailed knowledge about the domain and gathers all
the information pertinent to solving problems in that domain (20:4). Models the
real-world entities required to satisfy the policy, strategy, and use of an application
as defined by the system analyst. Determines how, if possible, these entities can be
modeled within the constraints specified by the software engineer (10).

4. Software Engineer — Designs new software systems in the domain (20:4). Responsi-
ble for defining a formalized structure for the domain knowledge and providing the
translation from the domain-specific terms to executable software (10).

5. Application Specialist — Uses systems in the domain (20:4). Familiar with the overall
domain and understands what the new application must do to meet the requirements

3-2

(a sophisticated “user”). Provides the application-specific information needed to
specify an application.

I requirement w

systemjanalyst

(domain knowiedge ’

— — dom-llionglncor

ljoncopt of operations I”

engineer -

—
— -

system

"\

r hardware system H-I [software system J_u II

domain model

<@—software engineer

application|specialist

L
ﬁ

ppllcatlon specmcatlo

asutomated appilication composer

software design

code gonoutlon capabliity

Figure 3.1. Roles

The relationships among these roles are shown in Figure 3.1. Usually, a new sys-
tem begins with the identification of a new requirement. This requirement, if valid, is
forwarded to a system analyst who develops a concept of operations. The system analyst
works closely with the system engineer who partitions the system into software and hard-
ware subsystems. The system engineer consults the appropriate domain engineer to define
which components of his domain will be needed for software applications in the domain.
The domain engineer and the software engineer decide on which components are needed

to model the domain. The software engineer forinalizes the domain knowledge provided

3-3

by the domain engineer into a domain model and its technology base. The application
specialist, using the domain model established by the software and domain engineers, cre-
ates a specification for an application. From this specification, an automated application

composer generates a software design which is then input to a code generation capability.

3.3 General System Concept

3.3.1 OQverview An overview of the application composition system’s components
and their relationships to each other appears in Figure 3.2. First, domain analysis is per-
formed, which consists of gathering appropriate domain knowledge, formalizing it via a
domain modeling language, and storing it in a domain model. The structure of the do-
main model is determined, in part, by the domain modeling language (DML) chosen. The
software architecture model, like the DML, imposes a specific structure on the domain
model, on the grammar used by the application specialist, and, ultimately, on the final
application specification. The domain model is used to develop a domain-specific gram-
mar. Although it may be transparent to the application specialist, he actually uses two
grammars: one to identify domain-specific information and one to specify the architecture
of the application. The architecture grammar remains the same for different domains; only
the domain-specific grammar changes. Application-specific data is written using these two

grammars and is converted into objects in the structured object base by the parser.

The populated structured object base and information from the technology base are
combined to build an executable prototype. First, the application specialist performs se-
mantic checking on the structured object base to ensure all constraints on the system have
been met. He then executes the prototype to demonstrate the behavior of the proposed
application. If the prototype does not behave as required, the application specialist can
change the original input and re-parse it into the structured object base. Using the knowl-
edge encoded in the domain model and the software architecture model, the structured
object base is manipulated into a formal specification for a domain-specific software archi-
tecture (DSSA). The DSSA 1is the system design and becomes the basis from which code
is generated. A visual system provides a graphical representation of the structured object

base and the DSSA, as well as a means to add to or modify them.

3-4

Aiqede) 6

uoneieued H

; 3.8& uoped
\ Jasodwon uonedday

uogBuIOY|
G oy10edg
uogeoyddy

Josied

Jowwep
einjoeliyoly

Figure 3.2. General System Overview

mwwap 1sq

3-5

The remainder of this section describes the above concepts and activities in more

detail.

3.3.2 Developing a Formalized Domain Model Before any applications can be com-
posed using this proposed system, the domain must be analyzed and modeled. In the
software engineering context, a domain is commonly defined as “an application area, a
field for which software systems are developed” (31:50) or “a set of current and future
applications which share a set of common capabilities and data™ (20:2). Identifying the
boundaries of the domain, as well as “identifying, collecting, organizing, and representing
the relevant information in a domain based on the study of existing systems and their
development histories, knowledge captured from domain experts, underlying theory, and
‘emerging technology within the domain” (20:2-3), constitutes domain analysis. Domain
analysis is currently the subject of several other research efforts and is not directly ad-
dressed in this project. However, it is important to gather the basic data, formalize it, and

store it in a standard format.

3.8.2.1 Domain Knowledge Domain knowledge is the “relevant knowledge”
that results from a thorough domain analysis and later evolves naturally as more experi-
ence is gained solving problems in the domain (31:47). More specifically, domain knowledge
consists of: basic facts and relationships, problem-solving heuristics, domain-specific data
types, and descriptions of processes to apply the knowledge (4). In the context of this
project, domain knowledge includes: descriptions of domain-specific objects (including
their attributes and operations), data types, composition rules, and templates for com-

monly used architectural fragments.

3.3.2.2 Domain Modeling Language An analogy to a domain modeling lan-
guage (DML) can be found in the more familiar data definition language of a database
management system. A data definition language describes the logical structure and access
methods of a database (21), just as our DML describes the logical structure of a domain
model and defines how the objects can be accessed. A DML used to encode domain

knowledge into a domain model must be able to formally describe:

3-6

1. Object Classes: Abstractions of real-world entities of interest in the domain.
2. Operations: Behavior of the objects in the domain.

3. Object Relationships and Constraints: Rules for relating objects (and sets of objects)
to other objects, as well as the constraints on these relaticnships. Examples include:

(a) Communication Structure: Message passing between/among domain classes and
operations.

(b) Composition Structure: Rules for combining domain object classes into higher-
level application classes and operations into higher-level application operations.

4. Exception Handling: What to do when an error is encountered.

To be useful in an automated system, the domain knowledge must be encoded into
a format that the software system can manipulate. This problem is analogous to encoding
knowledge in an expert system, where human knowledge is gathered and represented as
rules that allow a computer program to utilize the information. Neil Iscoe describes a
method for encoding domain knowledge into a domain model (see (19) for details). He
proposes using a domain modeling language or a meta-model as the basic framework to
instantiate a domain model based on some operational goal(s) (reasons for which the knowl-
edge will be used) (see Figure 3.3). Our operational goal is to “use the domain model,
software architecture model, and structured object base to generate a software architec-
ture for the application problem to be solved - to generate a domain-specific software

architecture” (2).

3.3.2.3 Domain Model A domain model is a “specific representation of appro-
priate aspects of an application domain” (18:302) including functions, objects, data, and
relationships (30). It is a result of expressing appropriate domain knowledge (identified by
the domain engineer) in a domain modeling language with respect to certain operational

goals (18:301-2).

Several researchers (5, 11, 12, 24) have indicated that software engineering must
become more of an engineering discipline if we are ever to reap the benefits of design reuse
(increased productivity, improved reliability, certifiability, etc.). When designing specific
applications, engineers use models, “codified bodies of scientific knowledge and technology

presented in (re)usable forms” (11:256) which are available to all practione:s in various

3-7

Sampie Operational Goals:
« Automatic Program Generation
* Reverse Engineering
* Decision Modeling
« Automated Testing

Figure 3.3. Domain Model Instantiation

technology bases. Reuse of these validated, commonly-used models, which are readily
available in various technology bases, allows the engineer to construct a practical, reliable

solution to the problem at hand.

Contained within our domain model is such a technology base which acts as a repos-
itory for our reusable models. In our system, these models are often referred to as compo-
nents. Using an object-based perspective, a component can represent a real-world entity,
concept or abstraction and encompasses all descriptive and state information for that en-
tity/concept/abstraction as well as its behavior (what operations or functions it performs
and/or what transformations it undergoes). Components can be primitive domain objects
as described above or a “packaging” of these objects whose structure is determined by
the software architecture model. These packaged components will be referred to as ar-
chitectural fragments since they can be used to build an application architecture. The
technology base contains templates for generic components, rules for component composi-
tion, and descriptions of primitive object behavior. The parameters required to instantiate

these generic templates will be specified by the application specialist.

Domain analysis reveals common features of the software architectures that can be
used to implement various specific applications within the domain. In addition, common

constraints are identified and codified into rules used to determine how software com-

3-8

ponents can be legally combined. Using rules allows additional flexibility; any specific

architecture can be built as long as it meets the criteria specified by the rules.

3.8.3 Building A Structured Object Base Several steps must be taken to build the

structured object base. The following system components are essential to this phase.

3.3.3.1 Domain-Specific Language As with our domain modeling language,
an analogy to a domain-specific langnage (DSL) can be found in a data manipulation
language from the realm of database management systems. In the database context, a
data manipulation language allows the user of a database to retrieve, insert, delete, and
modify data stored in the database (21:13). In our context, a DSL is a language with syntax
and semantics which represents all valid objects and operations in a particular domain,
allowing modeling and specification of systems within that domain (32). According to
James Neighbors, a domain language is a machine-processable language derived from a
domain model. It is used to define components and to describe programs in each different
problem area (i.t., domain). The objects and operations represent analysis information
about a problem domain (28). In our research, a domain-specific language is defined as a

formal language used to define instances of objects and operations specific to a domain.

The objective of our DSL is to generate the structured object base needed to specify

an application architecture within a specific domain. To do so, it must be able to:

Instantiate objects
Instantiate generic objects

Instantiate generic architectural fragments

oW N

Compose the instantiated objects and architectural fragments in some meaningful
way

The object classes defined in the domain model are merely templates or patterns to
be used when constructing objects; they do not refer to specific, individual objects. The
first sentence type listed above creates specific instances of the objects in the object base.

These objects are used in building architectural fragments or as parameters for generics.

3-9

Default values can be used for attributes so these values need not be entered through the

DSL every time they are used.

Generics, stored in the technology base, provide templates for commonly used objects
and components; thus, the application specialist need not start from scratch each time he
wants to include one of these commonly used components. Generics must be instantiated
before they can be used. Instantiation is done by specifying which model is to be used
and providing specific instances and/or other data, as required. For example, a generic
architectural fragment may use three objects of a certain class. When this generic is

instantiated, three specific object instances of the required class must be given.

3.3.3.2 Software Architecture Model In addition to identifying the objects to
be used in generating a particular application, the application specialist must indicate what
is to be done with those objects; i.e., he must identify the application operations. Domain
primitive operations, associated with primitive objects, are available in the technology base.
But how can these primitive operations be assembled (composed) into application-specific
operations? What are the rules for composing these primitive operations into application

operations? How can these rules be represented and implemented?

Software architectures provide insight into software system composition. In its most
fundamental sense, an architecture is a recognizable style or method of design and con-
struction. A software architecture has been defined as “a template for solving problems
within an application domain” (40:2-2) or “the high level packaging structure of functions
and data, their interfaces and controls, to support the implementation of applications in
a domain” (20:3). It provides a mechanism for separating “the design of (domain) models
from the design of the software” (10). This separation of domain knowledge from software
engineering knowledge allows each type of engineer to concentrate on the issues relevant to
his own area of experience, without becoming an expert in the other discipline. By focus-
ing only on the design of the software, the software engineer is able to develop simplified

packaging and control structures which can be reused across a wide variety of domains.

Because a software architecture serves as a structural framework for software develop-

ment, we can expect it to provide a consistent representation of system components as well

3-10

as the interfaces between those components. A standard representation ensures that each
component is developed in the same manner, eliminating many implementation choices and
simplifying the development process. This standardization also results in consistent inter-
faces between all components, enabling them to be easily combined. This consistency of
component representation and interfaces should provide a suitable and flexible framework

for composing primitive operations into application-specific ones.

3.3.3.3 Architecture Grammar Certain portions of the application specialist’s
input are not dependent on any particular domain; rather, they depend on the software
architecture model. These architectural aspects of the application can be specified using
a grammar common to all domains, an architecture grammar. This grammar enforces the
structure imposed by the software architecture model by defining valid sentences for pack-
aging the primitive domain objects into architectural fragments to define an application
architecture. These sentences will compose application operations using domain-specific

components described by the domain-specific grammar and other application operations.

3.3.3.4 Parser After the application specialist specifies the application com-
ponents using the domain-specific language and architecture language, the input must be
parsed into objects in the structured object base. The parser generates specific object

instances whose initial states are determined by the application specialist’s input.

3.3.3.5 Structured Object Base The structured object base contains applica-
tion specific information: specific instances of domain object classes with all appropriate
attribute values for determining the object’s state, as well as relationships for both do-
main objects and operations. The kinds of objects that might populate the object base
and the overall structural framework of those objects (the shape of the abstract syntax
trees) are established by the domain and software architecture models. The specific object
instances and the actual structure of the object base are determined by the application-
specific information provided by the application specialist using the DSL and architecture

grammars.

3-11

3.3.4 Composing Applications The application composer generates the application
architecture specified by the application specialist. This is accomplished by combining the
appropriate instantiated domain objects from the structured object base in accordance
with the domain composition rules. After the architecture is generated, its behavior can
be simulated to demonstrate its suitability and correctness. It should be noted that the
operations associated with each object in the technology base are certifiably correct; that
is, individual objects are guaranteed to behave as required. However, the specific objects
which are composed into the application may have been combined in such a way that
the composed application may not behave as expected or required. When the application
specialist is satisfied that the composed architecture is actually the one desired, he can
generate a formal specification for the architecture which can later be used to develop a

fully coded system.

3.3.4.1 Semantic Analysis After an application is identified, the next step
is to ensure that the specified composition is appropriate; i.e., that it makes sense and
meets the constraints imposed by the composition rules. This step is accomplished via a
semantic analysis phase. As in programming language compilers, one aspect of semantic
analysis is to verify that a syntactically correct construct, which satisfies the restrictions
of the grammar in which it was written, is “legal and meaningful” (13:10). To be legal and
meaningful, the proposed application must meet certain other composition restrictions:
e.g., components must already exist before they can be used, an input to one component
must be produced as an output from another component, etc. Another aspect of semantic
analysis is to use knowledge about domain objects and typical system constructions to
assist the application specialist in choosing the components needed and in combining them
appropriately to create applications which behave as desired. Errors identified during the

semantic analysis phase must be corrected before the composition process can proceed.

3.3.4.2 Ezecute A composed application architecture that passes all semantic
analysis checks is legal and meaningful, but does it do what the application specialist wants
it to do? The execute component of the application composer simulates the behavior of

the architecture, using object operations which specify each component’s behavior. This

3-12

behavior simulation may not be efficient or robust enough to serve as a full-scale opera-
tional system, but it provides the application specialist timely feedback on the correctness
of the specified architecture. If the application is incorrect (i.e., it does not behave as re-
quired /expected), the application specialist reassesses the components which were used in
the application and how they were combined, creating a new or editted application to sat-
isfy his requirements. This ability to simulate execution behavior in this rapid-prototype
manuer assures the application specialist that the proposed application actually behaves

correctly before a formal specification and fully-coded system are generated.

3.3.4.3 Generate Specification A legal, meaningful, and correctly composed
application provides a software architecture which satisfies the application specialist’s
requirements for a particular application. The software architecture can be used as a
blueprint, template, or specification from which to design and implement a full-scale, op-
erational version of the application. The generated specification is intended to be in a
formal, machine-processable format which can be used directly by a code generation tool
to produce a fully-coded application. However, the specification format could be tailored

to provide whatever form is appropriate for the using organization: graphical, textual, etc.

3.3.5 Ertend Technology Base Eventually, the technology base, which formalizes
the knowledge about domain objects, will become outdated as understanding of the do-
main evolves and as the domain itself adapts to accommodate a changing technological
environment. Although the technology base may appear to be static, it must be dynamic
enough to accommodate this additional information as well as higher-level object classes
and operations, generic components and architectural fragments that are developed. These
additional elements give added flexibility to the application specialist because more pre-

defined components are available for future applications

A specialized set of tools allows the technology base to be modified or extended
to include this additional or revised domain knowledge. The extender must enforce the

structure dictated by the domain modeling language and the software architecture model.

3-13

3.3.6 Visualization “A picture is worth a thousand words.” This old adage is
still true today, especially when dealing with complex and abstract concepts. The visual
system provides the application specialist with a graphical view of the structured object
base, as well as the application software architecture generated to satisfy his requirements.
By reviewing these “pictures,” the application specialist can more fully understand the
components available for composition and the application just composed. Moreover, the
visual system will also be capable of inserting new instances of domain objects into the
structured object base, editing domain objects already in the object base, and executing
the application composer. It also provides the capability to extend the technology base,
enabling the application specialist and/or the software engineer to add/modify domain

object classes, add/modify generic components, and add/modify architectural fragments.

The visual system is addressed in more detail in (44).

3.4 Related Research

Several other research efforts have addressed various aspects of the system we are
attempting to develop. This section summarizes this related work and analyzes the simi-

larities to and differences from our project.

3.4.1 Hierarchical Software Systems With Reusable Components Don Batory and
Sean O’Malley are working to incorporate an engineering culture into software engineering.
The traditional engineering mindset dictates that new systems are created by fitting well-
tested, well-defined, and readily available building blocks into a well-understood blueprint
or architecture, which, if properly used, is guaranteed to produce the desired system. To
this end, they have developed a “domain-independent model of hierarchical software design
and construction that is based on interchangeable software components and large-scale

reuse” (5:2).

In Batory and O’Malley’s view, each interchangeable component consists of an in-
terface (everything externally visible) and an implementation (everything else). Different
components with the same interface belong to a realm. All the components in a realm are

considered to be interchangeable or “plug-compatible” (5:3) because they have identical

3-14

interfaces. Symmetric components have at least one parameter from their own realm and
can be combined in “virtually arbitrary ways” (5:2) (also see Figure 3.4). Conceptually,
components are seen as layers or building blocks for an application; a system is seen as a
stacking of components, i.e., a composition of components. Constraints on stacking com-

ponents (i.e., rules of composition) are derived from the compatibility of their interfaces.

Hierarchical software system design recognizes that constructing large software sys-
tems is a matter of addressing only two issues: which components should be used in a
construction and how those components are to be combined together (5:16). It employs
an open software architecture, which is limited only by the inherent ability of the compo-
nents to be combined, i.e., by their interfaces. Symmetric components have no inherent
composition restrictions; thus, composition rules are simplified while ensuring maximum

design flexibility and potential reusability of components.

Given the following plug-compatible components:
A[x:R], Bi[x:R], C[x:R]
Some of the valid compositions include:

A
v
B
v

O le>» &
< > 40O
> |4 o <JO

C B

AIB[C]] B[A[C]] CIA[B]] C[B[Al]

Figure 3.4. Combining Plug-Compatible Components

3-15

Concept Grammar
Parameterized Components{ Productions with non-terminals on right
Parameterless Components | Productions that only reference terminals
Symmetric Components Recursive production
Component Interface Left side of a production
Implementation Right side of a production
Realm Set of all productions with the same head
Software System Sentence
Rules of Composition Semantic error checking

Table 3.1. Analogy to Grammar

Batory and O’Malley use an interesting analogy, equating their concepts to a gram-
mar, as shown in Table 3.1 (5:5). Using this analogy, a domain is a language. Consider

the following example (5:5):

S ={a,b,c} - S—oalblc
R = { g[x:S], h[x:S}, i[y:R]} R —gS|hS|iR

A realm S, having a set of components (a, b, and c), corresponds to a production where
the non-terminal S can be replaced by either a, b, or c. Whenever a component from realm
S is needed, a, b, or c could be used, depending on the behavior and level of detail needed.
A realm R, whose components g, h, and i require parameters from realms S, S, and R,
respectively, can be represented by a production where a non-terminal can be replaced by
both a terminal and a non-terminal. The non-terminals on the right-hand side are the
realms from which the parameters are provided. The complete analogy is summarized in

Table 3.1.

Batory and O’Malley’s work provides support for our research. It confirms the un-
derlying principle of an application generator: building software systems from reusable

components is “simply” a matter of selecting which components to use and deciding how

3-16

to compose them together. It reinforces our intention to use an object-oriented approach
in designing our system. It also illustrates the role of component interfaces in system com-
position and demonstrates the importance of consistent interfaces and composition styles

in developing rules for combining components.

On the other hand, the Batory/O’Malley work falls short, in some ways, of what we
are attempting. It does not incorporate a mechanism for an application specialist to specify
new applications in domain-specific terms; this is a primary emphasis of our project. It also
does rot seem to provide for tailoring of component composition to suit the application
being built; composing component A with component B into component C will always
produce the same behavior for C. We want to be more flexible in our compositions and
allow A and B to be composed into C in one situation and C’ in a different situation,

depending on how the application specialist specifies the composition.

3.4.2 Automatic Programming Technologies for Avionics Software The Lockheed
Software Technology Center has developed the Automatic Programming Technologies for
Avionics Software (APTAS) system pictured in Figure 3.5 (25:2). The APTAS system,
built for the target tracking domain, “takes a tracking system specification input via user
interface with dynamic forms and a graphical editor, and synthesizes an executable tracker
design” (25:1). An application specialist defines a new tracking application by answering
questions which appear in pop-up, menu-like forms. His answers determine which addi-
tional questions are to be asked as he is guided through specifying a new tracker. When all
pertinent specifications have been entered (defaults exist for questions which are left unan-
swered), the application specialist generates a software architecture for the new tracker
via the architecture generator. A graphical user interface provides a “picture” of the ap-
plication architecture and allows the user to change it interactively. After the application
specialist is satisfied with the architecture just created, he generates executable code to
implement that architecture via the synthesis engine (25). He can also invoke a run-time

display which facilitates testing and analyzing the tracker just created.

The Tracking Taxonomy and Coding Design Knowledge Base is at the center of the

APTAS system. It contains the system’s specification forms, the primitive modules from

GRAPHICAL USER

DYNAMIC FORMS INTERFACE

INTERFACE

ARCHITECTURE
GENERATOR

FORMS
GENERATOR

RUN-TIME DISPLAY

TRACKING TAXONOMY
AND
CODINGDESIGN
KNOWLEDGE BASE

I ADA PROGRAM F ADATRANSLATOR

Figure 3.5. APTAS

3-18

which new trackers are constructed, and the composition rules which establish how prim-
itive modules are to be combined. The application specialist’s answers to the questions
on the specification forms progressively reduce the number of primitive modules which
are candidates for incorporation into the new tracker. The architecture generated upon
completion of the forms specification is synthesized into an executable intermediate lan-
guage, Common Intermediate Design Language (CIDL). The CIDL code can be executed
to demonstrate system behavior. If the system behaves as desired, the CIDL representa-
tion can then be transformed into Ada code. The use of an intermediate representation,
such as CIDL, localizes the code translation function and enables languages other than

Ada to be targeted more easily.

The APTAS primitive modules and their composition rules are also written in CIDL.
Extending the system involves writing new primitive modules and incorporating references
to these new modules into the appropriate composition rules and specification forms. This
is generally considered to be a software engineer’s task (rather than an application spe-
cialist’s), as CIDL is a software specification language and few tools exist to simplify the

process.

APTAS is strikingly similar to the system we envision. It clearly demonstrates that
the concept of user-initiated composition and generation of domain-specific systems is
feasible. It allows application specialists to specify new applications in domain-specific
terms, by way of menu-like specification forms. It also provides a sophisticated graphical
user interface which can be used to construct and/or edit the tracker system, as well as to

view the structure of the architecture.

There are, however, some major differences between APTAS and the system we
are developing. APTAS’s use of a domain-specific language is implicit and embodied in
its graphical user interface. Our domain-specific language, on the other hand, is explicit
and its grammar is usable in both textual and graphical modes. We believe this provides
advantages to both the software engineer and application specialist in terms of adaptability,
flexibility, and ease of use. In addition, APTAS currently lacks a set of convenient tools to

facilitate extending its knowledge base; such a toolset is an integral part of our system.

3.4.3 Model-Based Software Development The Software Engineering Institute’s (SEI)
Software Architectures Engineering (SAE) Project has proposed a concept called Model-
Based Software Development (MBSD) (24). Like Batory and O’Malley, MBSD strives to
apply traditional engineering principles to software development by exploiting prior ex-
perience to solve similar problems. This prior experience is codified in models, “scalable
units of reusable engineering experience” (24:11), which are stored in a technology base.
In a mature engineering domain, the technology base will contain “all the components an
engineer needs to predictably solve a class of problems, and the tools and methods needed
to predictably fabricate a product from the components specified by the engineer” (24:4).
Under MBSD, software development follows the engineering paradigm: reuse existing, ma-
ture models rather than starting from scratch for each new development. This involves
much more than code reuse; the requirements analysis, design, and software architecture

are reused each time the corresponding model is used.

MBSD uses a technology base, a repository of models and composition rules that
share common engineering goals. Each model is mapped to a specification form and a
software template for the target application language. The specification form is a text-
based description which uniquely identifies a specific instance of a model. The software
template is code containing place holders, which are replaced with information from the

specification form (24:10).

As part of MBSD, the SEI uses the Object-Connection-Update (OCU) model as
a consistent pattern of design, a software architecture. This model is especially suited
to domains where the real world can be modeled as a collection of related systems and
subsystems (24:17). Partitioning a system into subsystems provides different levels of
abstraction, giving the flexibility to replace a subsystem with another that either provides
a different function or has a different level of detail. In the OCU model, subsystems consist
of a controller, a set of objects, an import area, and an export area as pictured in Figure 3.6

(24:18).

3-20

)

Exports

Imports

Controller

Objects

Figure 3.6. OCU Subsystem Construction

1. Controller — Performs the mission of the subsystem by requesting operations from the
objects it connects. A controller is passive, triggered by a call to perform its mission,
and depends on the other subsystem components to accomplish that mission.

2. Objects — Model behavior of real-world entities and maintain individual state infor-
mation. An object is passive, triggered by a call from the controller to which it is
connected.

3. Import Area — Makes data external to the subsystem available to the controller and
its objects.

4. Export Area — Makes data internal to the subsystem available to the other subsys-
tems.

Both controllers and objects have standard procedural interfaces used by external
controllers or application executives to invoke some action. Controllers have the following

procedures (24:19):

1. Update — Updates the OCU network based on state data in the import area and
furnishes new state data to the export area.

2. Stabilize — Puts the system in a state consistent with the current scenario.

3. Initialize — Loads the configuration, creates objects, and defines the OCU network.

3-21

4. Configure - Establishes the physical connection between import area and input data
as well as export area and the output data.

5. Destroy — Deallocates the subsystem.

All objects have procedures analogous to those for controllers, but operating on a single

object instance. Specifically, these procedures are (24:20):

Update — Calculates the new state based on input data and the current state.
Create — Creates a new instance of the object.
SetFunction — Changes or redefines the function used to calculate the state.

SetState — Directly changes the object’s state.

A

Destroy ~ Deallocates the object.

These well-defined and consistent interfaces for controllers and objects facilitate and sim-

plify the application composition process.

MBSD provides some significant insights upon which to base our research effort. Its
focus on the reuse of validated, engineering experience is attractive and we have adopted
the notion of storing such information in a technology base. The OCU model provides a

realistic approach toward composing primitive objects into application-specific subsystems.

3.4.4 Eztensible Domain Models’ The Kestrel Interactive Development System
(KIDS) is a knowledge-based system that allows for the capture and development of do-
main knowledge (39). The representation of the domain knowledge constitutes a domain
model, and these domain models are called domain theories. Essentially, the domain the-
ory provides a formal language, natural to specialists in that domain, for specifying the
problem they want to solve. The KIDS system provides support for constructing, extend-
ing, and composing domain theories, and over 90 theories have been built up in the system
(39). Additionally, the set of domain theories developed during the domain modeling effort

serves as the basis for software synthesis.

The foundations of the KIDS approach emerged from years of research into the

specification and synthesis of programs (39). Concepts from algebra and mathematical

?This section was provided by Major Paul D. Bailor

3-22

logic are used to model application domains and synthesize verifiably correct software.
Domain modeling entails the analysis of the domain into the basic types of objects, the
operations on them, and their properties and relationships. The domain model is then
expressed as a domain theory. Theories are useful for modeling application domains for

the following reasons.

1. The basic concepts, objects, activities, properties, and relationships of the domain
are captured by the types, operations, and axioms of a theory.

2. Any queries, responses, situation descriptions, hypothetical scenarios, etc. are ex-
pressed in the language defined by the domain theory.

3. The semantics of the application domain are captured by the axioms, inference rules,
and specialized inference procedures associated with the domain theory.

4. Simulation, query answering, analysis, verification of properties, and synthesis of
code are supported by inference within the domain theory.

5. Various operations on models such as abstraction, composition, and interconnection
are supported by well-known theory operations of parameterization, impostation,
interpretation between theories, and others. Thus, a high degree of extensibility is
obtained.

3.5 Specific System Concept

Several aspects of the system described in Section 3.3 depend heavily on the choice
of the models and tools used in the implementation. These selections may impact other
parts of the system. Figure 3.7 is a modification of the system overview, incorporating the
specific models and tools to be used. It represents Architect, the specific system which is

to be implemented during this research effort.

3.5.1 System Overview Figure 3.7 illustrates how specific tools and models further
define Architect. REFINE, as the domain modeling language, imposes its structure on the
domain model (which will be represented in REFINE also). Input, written in the domain-
specific and architecture grammars, is processed through a parser generated by DIALECT.
DIALECT requires two inputs to generate a parser: a DIALECT domain model (a subset
of the system domain model) and a grammar definition. The DIALECT parser creates

abstract syntax trees in the structured object base. The visualizer will be implemented

3-23

Aqeden
uogeieueD [

6po) oL

: .a [onipuy
¥ o_E-Eom
g s 2&

;omanoo Lo1jEeD

103viId

suoijeoyoeds

10eqO ¥ seiny
uogisodw o)

I9FON
]10.0)

Jewweln 1sa

EINEE S

\-

4 103Wvia

mbos
urewoq

uojew.oju)
oyeds
uogeojiddy

Figure 3.7. Overview of Specific System

3-24

using INTERVISTA. The SEI’s OCU model will serve as our software architecture model,
providing a structure around which to generate our applications. KIDS will serve as a

mechanism for realizing extensibility of the domain model and technology base.

3.5.2 Software Refinery Software Refinery is a formal-based specification and pro-
gramming environment developed by Kestrel Institute and available commercially from
Reasoning Systems, Inc. We have selected this environment in which to implement Ar-
chitect for several reasons, but the main factor in our decision is REFINE’s powerful,
integrated toolsets that allow rapid prototyping. This decision has many implications on

how the system will operate, as we will show.

3.5.2.1 Capabilities The REFINE environment consists of the following tools:

1. A programming language (REFINE) which includes set theory, logic, transformation
rules, pattern matching, and procedures (35:1-2). The REFINE language provides
a wide range of constructs from very high level to low level, making it suitable for
various programming styles, including use as an executable specification language.

2. An object base which can be queried and modified through REFINE programs (35:1-
2). “Object classes, types, functions and grammars are among the objects you can
define and manipulate” (35:1-4) with several built-in and powerful object base ma-
nipulation tools.

3. A language definition facility (DIALECT) which allows design of languages using an
extended Backus Naur Form notation. REFINE supplies a lexical analyzer, parser,
pattern matcher, pattern constructor, and prettyprinter for the language (35:1-2).

4. A toolset (INTERVISTA) which is useful in creating a visual, window-based inter-
active user interface.

3.5.2.2 Domain Modeling Language Some domain modeling languages al-
ready exist for expressing domain knowledge within a formalized domain model; we con-

sidered two such languages: the Requirements Modeling Language (RML) and REFINE.

RML was designed as a research tool as part of the Taxis Project at the University of
Toronto. It allows “direct and natural modeling of the world” (16:3) in an object-oriented
manner which “captures and formalizes information that is left informal or not documented

in current approaches” (16:1). RML can express “assertions (what should be true in the

3-25

world), as well as entities (the ‘things’ in the world) and actions (happenings that cause
change in the world)” (16:4). This is precisely the type of information we want to capture

in our domain model.

Even though both RML and REFINE appear to be capable of expressing the kind of
information we require in the domain model, we chose REFINE as our domain modeling

language for the following reasons:

1. REFINE provides an integrated environment including programming constructs and
powerful object base manipulation tools. Use of REFINE’s existing tools eliminated
the need to write our own, allowing more time to be spent on the research itself.

2. RML is not an executable language; no compilers currently exist. To use RML, we
would be forced to develop a compiler, a considerable overhead to our project. As
REFINE is also capable of expressing the information we require, it is unclear what
added benefits RML could provide to justify this additional expense.

3. The REFINE environment includes compatible tools (DIALECT and INTERVISTA)
useful in other portions of the system.

4. REFINE is a commercially available and supported product.
5. Members of the research team already possessed a working knowledge of REFINE.

3.5.2.3 Parser “DIALECT is a tool for manipulating formal languages” (34:1-
1). A part of the REFINE software development environment, DIALECT generates appro-
priate lexical analyzers, parsers and pretty-printers for user-specified, context-free gram-
mars. Valid input is parsed and stored as abstract syntax trees in the REFINE object
base, according to the structure established in the DIALECT domain model. The DI-
ALECT domain model defines object classes, object attributes, and the structure of the
instances in the object base. DIALECT also supports grammar inheritance, allowing for a
base language with several variations or “dialects.” In Architect, the architecture grammar
acts as the common base, and the domain-specific grammar specifies a particular varia-
tion. DIALECT does impose restrictions on the grammars. Since DIALECT generates an
LALR(1) parser, the grammar must be consistent with this type of parser. Also, the pro-
ductions in the grammar must correspond to the structure defined in the domain model.

Altering some productions may require updating the DIALECT domain model.

3-26

3.5.2.4 Structured Object Base The structured object base was implemented
using the REFINE object base. REFINE includes many tools which, when combined with
REFINE code, provide all of the functions necessary to manipulate the structured object

base. However, the object base must be accessed through the REFINE environment.

3.5.2.5 Technology Base Models in the technology base were represented as
REFINE code and stored in REFINE’s object base. Although separate conceptually, the
technology base and structured object base are not physically separate. Access is controlled

by Architect to avoid any confusion.

3.5.2.6 Visual System INTERVISTA provides a tool set with which to gen-
erate a window-based graphical user interface. It is compatible with the other REFINE
tools; therefore, it is easily integrated. INTERVISTA can access the REFINE object base,

so all its required data is readily available.

3.5.3 Object-Connection-Update Model We have selected the Software Engineering
Institute’s Object-Connection-Update (OCU) model for our software architecture model.
As such, it provides a framework for composing applications — a standardized pattern of
design for all applications and their components. The OCU model’s consistent interfaces
enable all components to be accessed in the same manner and its intercomponent commu-
nication scheme ensures that each component can readily access the external data needed
for its processing. Currently, our focus is on implementing the subsystem aspect of the
OCU model; the hardware interface portion of the model will be addressed in follow-on

research efforts.

The choice of the OCU model for our software architecture model had certain impli-

cations for Architect.

1. Terminology ~ In keeping with the OCU model, we will refer to domain primitive
objects as “objects,” compositions of objects as “subsystems,” the locus of control of
a subsystem as a “controller,” and the overall application itself as an “executive” (see
Sections 4.2.1.3 and 4.2.2.1 for a more detailed discussion of the executive). External
data needed by an object are “input-data,” whereas data to be made externally
available are “output-data.” An “import area” serves as a focal point for all external

3-27

data needed by the subsystem and an “export area” is the focal point for all internal
data to be made available to other subsystems. The OCU model’s names for the
object and controller procedural interfaces have also been retained.

. Use of a Technology Base — Although the concept of storing reusable domain knowl-
edge or models in a technology base is not unique to the OCU model, it is a funda-
mental component of Model-Based Software Development of which the OCU model
is a part.

. Domain Analysis - The OCU model deals with objects and subsystems. This imposes
a constraint on the domain engineer and will impact the manner in which domain
analysis is conducted. Under the OCU model, the domain engineer must model the
domain in terms of subsystems which can be composed from lower-level, more prim-
itive objects. Many domains can be naturally modeled in such a way; with other
domains, a new mindset may be needed to incorporate the subsystem/object require-
ments of the OCU model. Alternatively, an additional class of software architectures
may need to be defined.

. Definition of Domain Objects — The OCU model requires that all cbjects be defined
in the same manner. FEach object has state data, other descriptive information,
input-data/output-data definitions, and the following procedural interfaces: Update,
Create, SetFunction, SetState, and Destroy. These requirements dictate how the
objects will be constructed, severely limiting implementation choices. However, it is
this very limitation which provides the flexibility that allows the domain objects to
be successfully composed to satisfy the application specialist’s specification.

. Definition of Architectural Fragments — The OCU model requires that all architec-
tural fragments (subsystems) be described in the same way. All subsystems have
an import area, export area, controller, and objects. Each controller has the follow-
ing procedural interfaces: Update, Stabilize, Initialize, Configure, and Destroy. As
with the objects, this apparent limitation on implementation choices actually pro-
vides great flexibility in composing subsystems and combining them into a complete
application.

. Composition Rules — The standardized object/subsystem definitions and interfaces of
the OCU model simplify application composition. There are no inherent restrictions
preventing one component from being combined with another; all composition rules
are domain-specific and do not derive from the software architecture.

. Intercomponent Communication — The OCU model establishes and enforces a stan-
dard method for intercomponent communication. Communication external to the
subsystem is localized in the import area which obtains the necessary input-data
for all objects within the subsystem. This localization of communication concerns
within the narrow guidelines imposed by this scheme simplifies intermodule commu-
nication: subsystems can readily obtain needed external information in a consistent
manner and changes in the low-level implementation of the communication process
are hidden from the subsystems/objects.

. Structure of the Resulting Application Specification — Obviously, the specification
produced by the application composer is impacted by the choice of a software ar-

3-28

chitecture model. The OCU model produces an application (an “executive”) which
is composed of subsystems. These subsystems can be decomposed into objects and
lower-level subsystems, if appropriate. This hierarchical structure is preserved in the
generated specification.

The OCU model is the result of years of research and experimentation by the SEI.
It has been used successfully in the flight simulator, missile, and engineering simulator
domains (10) and appears to provide a suitable structure for composing applications within

our application composition system.

3.6 Conclusion

Software engineering may be on the brink of a new era, an era in which software
engineers develop knowledge about generating software systems and application specialists
actually create the software systems using familiar, domain-oriented terms. Our research,
which builds on important work already accomplished by various researchers, is designed

to demonstrate the feasibility of such an application composer.

3-29

IV. Software System Design Overview

This chapter presents an overview of the high-level design of the application com-
position system introduced in Chapter III (Architect). It discusses various preliminary
design decisions (which stem from the choice of the OCU model for the software architec-
ture of the composed applications) by reviewing the OCU model and identifying certain
adaptations which were made for this implementation. In addition, the implementation’s

goals/objectives, conventions, and data structures are examined.

4.1 High-Level System Design

This section! describes the high-level design of Architect, the system presented in
Section 3.5.

4.1.1 Design Goals Throughout the design process, an attempt was made to opti-

mize several fundamental goals. These goals include:

4.1.1.1 Domain Independence Since Architect must be applicable to any do-
main, it should not directly incorporate (i.e., “hardcode”) knowledge about a specific
domain or type of domain; the technology base is the proper, sole repository for such
domain-specific information. If any domain knowledge were to be included in Architect,
code changes would likely be required before it could be used with a new or modified

domain. Obviously, this greatly limits the applicability and usability of the system.

4.1.1.2 Extensibility It would be very naive to assume that an initial domain
analysis will reveal all possible knowledge about a particular domain and that the domain
model, which formalizes this knowledge, will never change. In reality, the domain model
will continue to evolve as existing knowledge is further refined and/or new domain infor-
mation is added to the system. If this evolution cannot be achieved easily, Architect will

quickly become obsolete.

1This section was jointly written by Captains Cynthia Anderson and Mary Anne Randour. It is included
in AFIT Technical Report AFIT/EN/TR-92-5 and also appears in (33)

4-1

4.1.1.3 Flexibility Because the concept of application composers is rather

new, we do not yet know how application specialists and software enginee.s w1il best be

able to use them. Architect, therefore, must be flexible enough to allow multigle methods

for performing various tasks and a wide range of application specification options.

4.1.1.4 Usability Application specialists, the primary users of this system,

must have some degree of software programming knowledge, but they can not be expected

to have the same degree of understanding as a software engineer. Therefore, it is important

that the system not require detailed programming knowledge from its users. In many cases,

the goals of usability and flexibility conflicted, so a balance had to be found.

Domain Model
Technology Base Sementic
Generics Instances Rules
Tempiates Primiive | | Appiications A Domain
Cbjects Specific
and
Subsysterns
T | | - —
1 p
Otk
To Saw T E:wi orce, " Otjects | | Semantic Objects | | Object
Input oSave Instances To Save Rules To Save Functions
Applioation X
Cbjsct Defn's
incomplete . :
. Ovleots Parse | Opject | Complete | Object and Object | Exeouts | ODISCt | Gongrate
' Base ot Base Base Base _— —*
Generic Application Cheok Specification
Instantiations Definition Semantios
Y
DSL Architecture
Qrammar Grammar
v
Edit Object Base

Figure 4.1. System Operations

4.1.2 Concept of Operations The steps which are followed when using this appli-

cation generator are depicted in Figure 4.1 as labels on the flow arrows. The application

specialist must first identify all objects to be used in the application specification and

enter (parse) them into the structured object base using domain-specific and architecture

4-2

grammars. Some of these objects may require further information before they are fully de-
fined (e.g., previously saved objects must be located and loaded, “holes” in generic object
templates must be filled, etc.); the application specialist provides this additional informa-
tion by completing the application definition. Although the application definition may be
considered complete from the user’s point of view, some data needed by the system may
not yet be directly available; preprocessing the application specification automatically gen-
erates this essential information. When the application is fully defined, semantic checks
are performed to identify any composition errors, which must be corrected before the ap-
plication’s behavior can be simulated. At any time, the application specification can be
changed (edited), usually in response to a semantic error or to include additional data. If
no semantic errors exist and no additions/changes have been made, the application’s be-
havior can be simulated (executed). If the application behaves as the application specialist
intended, he may generate a formal specification for the composed application which will

be used by an automatic code generator to produce a fully realized application.

Visual

P Application poro ‘ oi,d:q oo | |1y | | Goroe
ane on | | Preprocess | | Semantic ' Technology -
instanti Architecture
nstantiate (|| Load ok m
Complete Build
Object impor/Export
Definitions Areas

Figure 4.2. System Structure

4-3

4{.1.3 Software System Design The eight steps outlined above correspond directly
to Architect’s eight top-level modules as shown in Figure 4.2. The highest level module,
the visual system, will eventually control each of the other modules as well as all user in-
teractions through a graphical interface. However, the basic system was developed before
the visual system was completed; therefore, a simple user interface, which is easily re-
placed, was implemented. In the system design, we have made a conscious decision to keep
application specification a domain-oriented, rather than programming-oriented, process.
The system is designed to use all available domain knowledge to insulate the application

specialist, as much as possible, from programming details, conventions, and jargon.

Each of Architect’s major functions is encapsulated into one of the system’s top-level
p

modules. These modules are further discussed in the remainder of this section.

4.1.3.1 Parse Using REFINE, data can be input into the object base using
one of two different methods: through a grammar or directly by using built-in REFINE

functions.

Using the DIALECT tool allows the application specialist to reuse his input files
as templates for other application definitions. The grammar also provides a consistent
format for saving objects from the object base into the technology base. The domain-
specific portions of the grammar can be separated from the architectural components.
DIALECT allows grammars to inherit the productions of other grammars. In this case,
each domain-specific grammar inherits the same architecture grammar. If the domain is
changed, only one grammar is affected. However, the application specialist must conform
to the structure imposed by the grammars. If the current domain changes, the domain-
specific grammar will require appropriate, corresponding changes. If a different domain is
to be used, a new domain-specific grammar must be written; however, grammars for other

domains can serve as a guide to facilitate cr~ating new grammars.

An alternative approach is to build REFINE tools that allow the application specialist
to interactively enter the objects into the object base. This methcd migrates most easily
to the visual interface planned for a follow-on project (44). Also, this method is domain-

independent. However, additional code must be written to save portions of the object

L

base. The developer must devise a standard format for the files to allow this data to be

read back into the object base.

The best approach is to combine the two methods. The application specialist can
input objects into the object base either through a grammar or interactively. The grammar
provides a format for saving and retrieving all objects in the object base and a means of
saving “templates” for application definitions. The interactive portions extend more readily

to the visual system.

4.1.3.2 Complete Application Definition After all of the application special-
ist’s input is parsed into the object base, additional processing is needed to complete the
definition. The application specialist can fully define an object in the grammar or he can
give partial information in one of three forms: a generic instance, an incomplete object,
or an object to load. As part of completing the application definition, the system must
actually instantiate the generic objects, complete incomplete objects by prompting the ap-
plication specialist for values for each attribute, and physically load objects into the object

base.

4.1.3.3 Preprocess Application The structured object base now contains only
“complete”, fully-instantiated application components. However, some critical data has
not been specified. For example, the contents of a subsystem’s import and export areas
have not yet been identified. These areas are dependent upon the inputs and outputs,
respectively, of the primitive objects which are controlled by that subsystem. Appropriate
input-data and output-data for each primitive object have been identified during domain
analysis and are available to the system in the technology bas~. Using this knowledge,
the preprocessing module dynamically builds each subsystem. import and export areas,
prompting the application specialist to indicate where the import data will be obtained

when more than one subsystem produces the desired information.

4.1.3.4 Perform Semantic Checks Two levels of semantic checks exist in Ar-
chitect. Architecture-oriented semantic checks ensure that the proposed application spec-

ification conforms to the composition requirements of the OCU model and that its behav-

4-5

ior can be successfully simulated (e.g., all components exist in the object base, applica-
tion/subsystem update procedures directly reference only components which are part of
the same application/subsystem, data input to one subsystem is produced as output by
some subsystem in the application, etc.). Domain-specific semantic checks are knowledge-
based, building on what is known about the domain, its objects, and previous applications
created in that domain, to assist the application specialist in composing a meaningful and

optimized application.

Meaningful architecture semantic checks can be performed on the application as a
whole and also on its constituent subsystems. There are currently no meaningful semantic
checks for primitive objects; the system assumes that primitive object class definitions and

update procedures have been correctly constructed by a software engineer.

4.1.3.5 FEdit Application If the application specialist decides an object in-
stance is not exactly what was intended, he can edit the object. He can edit existing
instances, add new objects, or delete objects. If the application specialist modifies the
object base, he must also perform preprocessing and semantic checking on the entire ob-
ject base to ensure the integrity of the data before simulating behavior or generating the

specification.

The goal of domain independence has a large impact on how this module is designed.
If certain domain knowledge is embedded in the source code, the code must be modified
when the domain changes. If the code is completely independent, the interface may be
more difficult to build and less user-friendly (the system can not give detailed prompts
explaining what type of data is expected). In this case, domain independence is more

important than friendly prompts.

4.1.3.6 FEzecute Application After the structured object base is fully popu-
lated and the semantic checks have uncovered no errors, the application’s behavior can
be simulated. This enables the application specialist to ascertain if the application, as
specified, behaves as expected/desired. Behavior simulation is achieved by executing the

application’s update procedure, which consists of a series of calls to subordinate sub-

4-6

systems to execute their missions. Calling a subsystem to execute its mission invokes its
update procedure. Subsystem update procedures consist of calls to subordinate subsys-
tems/primitive objects, as well as if and while statements which allow conditional and

iterative flows of control.

4.1.3.7 Save to Technology Base Since saved objects can be retrieved and
parsed back into the object base, a function must exist to store objects in the object base
into a file. The objects must be stored in the format required by the input procedure, that
is, the format must adhere to the specifications of the domain-specific and architecture
grammars. Saved application definitions can later be retrieved and loaded into the object
base. Objects can be retrieved either through the grammar or through the interactive

interface.

4.1.3.8 Generate Specification When the application specialist is satisfied
that the specified application behaves as desired, he can generate its formal specifica-
tion. The formal specification provides all the information necessary to directly code the
application into an efficient production system. Indeed, the formal specification generated
by this application composer is intended to be input to an automated code generation

facility.

4.2 Preliminary Design of the Application Composer

Development of the full-scale application generator described in Chapter III will re-
quire several years of research and experimentation. This thesis effort focuses on one aspect
of that project — the application composer and, more specifically, the Preprocess, Perform
Semantic Checks, and Execute components. The implementation of these components is
dependent on the choice of software architecture for the composed application. The Soft-
ware Engineering Institute’s Object Connection Update (OCU) model was selected as the
software architecture for applications within Architect; the model can be easily formalized,
appears to be applicable to a variety of domains, and has been used successfully by the SEI

and other AFIT researchers (7, 40) for developing various simulators. This section briefly

4-7

reviews the OCU model, examines some of the goals/objectives of this implementation and

describes the data structures used to support it.

4.2.1 Review of the OCU Model The OCU model describes a software architecture
that is especially well-suited for developing software systems which can be “described as
a set of subsystems” (24:17). It consists of three kinds of components: primitive objects,

subsystems, and application executives.

4.2.1.1 Primitive Objects An object “models the behavior of a real-world or
virtual component and maintains (its) state” (24:19). It is passive, activated only by an
outside request to update its state. It is also very insular, aware only of its own internal
data and is oblivious to other objects in the system including the sources of the external

data it needs to update its own state. An object’s internal data include (24:20-21):

e Input_Data: Information which is external to the object but is needed to update the

object’s state.

e Output.Data: Information which results from updating the object’s state and which

must be made available to other entities external to the object.
e Attributes: Descriptive characteristics of a particular instance of the object.
e Current_State: Data which defines the current state of the object.

o Coefficients: Data used in calculating the object’s new state; can be modified to alter

the object’s behavior or state calculation.

e Constants: Information about the object which can not be changed.
Objects can be activated only through the following common, procedural interfaces (24:20):

e Update: Calculate the object’s new state data (i.e., encapsulates the object’s behav-

iorial description).

e Create: Allocate a new instance of the object.

4-8

¢ SetFunction: Change the function used to calculate the object’s new state data
and/or change the object’s coefficients which can alter the behavior of the current

update function.
e SetState: Change the object’s state data directly, bypassing the update function.

e Destroy: Deallocate the object.

4.2.1.2 Subsystems A subsystem is an abstraction which represents a real-
world subsystem. Some examples include the engine, electrical and airframe subsystems

in a flight simulator. A subsystem consists of (24:18-19):

o A controller: “aggregates a set of objects (and possibly lower-level controllers) and
manages the connections between them” (24:18). It is “the locus of a mission and
the objects are services to carry out the mission” (24:18). Like primitive objects, the
controller is passive and insular, aware only of the objects it connects and unaware
of other subsystems in the application. A controller can be activated only by one of

the following procedural interfaces:

- Update: “Update object-connection network based on state data in the import
area and provide new state data in the export area” (24:19). That is, it performs

the subsystem’s mission.

— Stabilize: “Converge subsystem consistent with current scenario and make ready
to operate... gets rid of transients” (24:19). In other words, it executes the
subsystem’s mission an appropriate number of times to let the data and/or

algorithm converge to the proper value.

— Initialize: “Activate supporting hardware... create objects and define object-
connection network” (24:19); i.e., create the subsystem and the subsystems/objects

which are controlled by it.

— Configure: “Program the transfer characteristics of the controller and the ob-
jects” (24:19). Or, more simply, change some of the controlled objects’ state

data, coefficients and/or update functions.

4-9

— Destroy: Deallocate the subsystem, as well as the subsystems/objects which it

controls.

e An import ar a: the focal point for external data needed by objects within the
subsystem. It “makes the state data available to the objects by retrieving the data

from other subsystems’ export areas upon request for the data” (24:19).

e An export area: the focal point for data which is to be made available to external
application components. “Data is placed in the export area where it is available to

other subsystems’ import areas” (24:19).

e Objects: the primitive objects (and/or lower-level subsystems) which are needed to

accomplish the subsystem’s mission.

4.2.1.3 Application Ezecutive An executive is “an artifact of shared processor
computing and provides the operating environment for the system” (42). It serves an a
“activator” for the subsystems within the application, directing them to perform their
missions as needed. Executives monitor interfaces to external entities and “manage time,
the controllers (subsystems), and the application state to provide acceptable responses
to stimuli” (42). This implies that the executive is the highest-level component in an

application and encapsulates its mission.

4.2.2 Adapting the OCU Model for this Implementation The OCU model described
above has proved to be very beneficial in separating “reaction strategy (or mission) from
the providers of the strategic operations” (42). This separation is especially significant
to application composition systems, as it allows virtually an infinite number of different
missions to be created without changing the system itself. However, the OCU model is
currently used only by computer professionals as an off-line tool for designing and coding
new software systems; it is not used by end-users to dynamically compose applications
and simulate their behaviors, as Architect will allow. The end-product of the model’s
usage to date has been fully-coded, unique software systems which satisfy a single (albeit
complex) requirement. As such, various interactions among elements of the model (espe-

cially import/export areas and subsystems) have been “hardcoded”, based on the specific

4-10

requirements of a single application. An application composition system must be flexible,
capable of supporting a wide variety of applications in a wide range of domains and cannot
rely on “hardcoded” interactions. Clearly, some additional consideration must be given to

an implementation of the OCU model which precludes such “hardcoded” interactions.

4.2.2.1 Application Ezecutive A fully-realized executive, capable of monitor-
ing/controlling time and interfaces to external entities, was deemed too ambitious for this
research effort, which is intended to demonstrate an application composition system “proof
of concept;” enhancements to the application executive will be added in the future. In this
implementation, an application consists of a collection of subsystems and an “executive
subsystem.” This “executive subsystem” is the forerunner of a fully-realized application
executive and is treated as a specialized, high-level subsystem without import and export
areas. Due to this lack of interfaces to external entities (i.e., input/output capabilities),

there can be no external data; all data must be internal to the application.

4.2.2.2 Objects Architect expects that all to-be-combined components al-
ready exist; in fact, creating these components is one aspect of the system’s Parse and
Complete Application Components phases. Moreover, dynamic (that is, run-time) cre-
ation and deletion of objects greatly complicates the application composition process; it
is extremely difficult to develop adequate semantic checks to ensure that such a proposed
application can be successfully executed under all conditions. Therefore, the Create and
Destroy OCU object procedural interfaces are not included in this implementation and are

left for future research.

4.2.2.83 Subsystems As mentioned above, Architect expects all to-be-combined
components to exist; this includes subsystems as well as objects. For reasons similar to
those described above, the Initialize and Destroy OCU subsystem procedural interfaces are
not implemented. In addition, due to some uncertainty about their utility, the Configure

and Stabilize subsystem interfaces also are omitted from this implementation.

4.2.2.4 Import and Ezport Areas A subsystem’s import area is the focus of

external data needed by all objects aggregated by the subsystem and, conversely, the export

4-11

area is the focus of external data produced by those objects. Clearly, with dynamic com-
position, the application composition system must “know” what external data is needed
by/produced by each object to allow proper construction of import and export areas; this
should be quite easy to accomplish with an appropriately conducted domain analysis. But,
given dynamically and properly constructed import and export areas, how should they be

implemented and accessed to support the spirit of the OCU model?

There are several options for implementing import/export areas and their access

functions. They include:

e Global Export Areas: All data which is to be made available externally to other
primitive objects is stored in a single, global area, similar to a FORTRAN common
area. When a primitive object requires external data, it is obtained directly from

this common export area.

This method, although easy to implement, violates the spirit of the OCU model,
which clearly intends import and export areas to be localized within subsystems and
to serve as the sole interface between primitive objects and the external data they

require.

e Pre-Execution Data Retrieval or “Latching”: Each subsystem has its own local im-
port and export areas. Immediately before a subsystem is executed, all required
external data is retrieved from appropriate export areas and copied into its import
area; the subsystem can then provide the data from its own import area when a

request is made for external data.

This approach certainly conforms to the OCU model description and ensures that all
imported values are temporally consistent. However, this method has a potentially
serious drawback: external data produced during a subsystem’s execution cannot
be used in the same execution cycle by other primitive objects within the same
subsystem. This may be (and most likely, is) too restrictive, considerably limiting

the range of meaningful applications which can be created.

e Point-of-Use Retrieval: Like the option described above, this method provides each

subsystem with its own local import and export areas. Unlike the earlier approach,

4-12

“

4.9

however, external data is retrieved as it is requested. This retrieval can be accom-
plished by the import area, which supplies the data directly to the requesting object

with no involvement by other elements of the subsystem.

This approach also conforms to the OCU model description which allows “objects to
access the import area’s procedures directly” (24:19). It allows for very flexible sub-
system construction, as external data produced by one object within the subsystem
can be imported to another object in the same subsystem in a pipeline-type manner.
Certain temporal restrictions on the data (i.e., a value must be exported before it
can be used as an import) can be accommodated by judicious specification of the

application/subsystem. This is the approach which will be used in this application.

Goals/Objectives for the Application Composer Implementation

The design of the application composer was influenced by the following goals/objectives:

The implemented code should be domain-independent; domain-specific information

should exist only in a technology base.

An application should be expressible in domain-oriented terms as much as possible;

computer software terminology and conventions should be kept to a minimum.

An application definition should consist of an application executive, in addition to

appropriate subsystem and primitive object components.

A primitive object’s mission is encapsulated within its update function. Subsystem
and application executive missions should be specified by the user ~ any automat-
ically generated mission would lack the flexibility required to adequately describe
all possible missions for all possible domains. However, certain patterns of control
may be identified for particular domains and may be applicable to a wide range of
subsystem /executive missions. Identification and implementation of such patterns of

control are left for future research.

Alternative flows of control should be available for use in specifying application execu-

tive and subsystem missions - sequential flow of control places too great a limitation

4-13

44

on mission specification. Therefore, IF-THEN-ELSE and DO-WHILE constructs
must be allowed. Further, variables must be allowed in if/while conditions to allow

meaningful conditions to be specified.

The application specialist should not be required to specify what external data is
required by and produced by the primitive objects within his application. This in-
formation is already available to the application composer as a by-product of domain

analysis and should reside in the technology base.

Objects and subsystems should be unaware of the source of external data, where it
is used, how it is stored, etc. This knowledge should be localized within import and

export areas.

External data needed by a primitive object should be retrieved as needed, not ob-
tained en masse prior to subsystem execution. This allows a primitive object to use
data just produced by another object within the same subsystem. With this retrieval
scheme, there is no need to store retrieved data in the import area; it can be passed

along directly to the requesting object.

The application specialist should reference imported and exported data by name.
This also pertains to identifiers in conditional expressions, as it has been established

that they reference import/export items.

The application specification shonld be complete before its behavior is simulated.
Therefore, all import-to-export connections must be established before the applica-
tion is executed. If more than one export datum can provide the information needed
by an import, the application specialist must be prompted to select the appropriate
one. If the application specialist truly does not care where the imported data comes
from, he should be able specify that an appropriate, arbitrary source be used. These
import-to-export connections are static; they are a fundamental aspect of the appli-

cation specification and are not changed dynamically during application execution.

Conventions Used in this Implementation

The following conventions are used throughout the application composer:

4-14

4.4.1 Conventions For the Software Engineer

e All primitive objects have been correctly defined using the primitive object template

described in Appendix A.

e All coded primitive object attribute/variable names are prefixed by the object’s ob-
ject class. For example: COUNTER-OBJ-COUNT - represents an attributed named
COUNT which applies to objects of the class, COUNTER-OBJ. This scheme ensures
that attribute/variable names are unique throughout the domain and presents a more
domain-oriented (rather than programmer-oriented) “feel” to the application speci-

fication.

e All update function names begin with the object class. Example: COUNTER-OBJ-
UPDATE]! is the name of the update function, UPDATE1, which is applicable to
primitive objects of the class COUNTER-OBJ.

4.4.2 Conventions for the Application Specialist

o The application specialist, when referencing update function names and coefficients
in setfunction statements and attributes in setstate statements, specifies only the

unqualified name. For example, the application specialist would specify

setfunction counteri updatel

to set COUNTER1’s update function to COUNTER-OBJ-UPDATE1 and

sotstate counterl (count, 2)

to set COUNTER1’s COUNTER-OBJ-COUNT attribute to 2. This scheme allows
the application specialist to use more domain-oriented (rather than programmer-
oriented) terms and frees him from concern about object class names while preserving

attribute name uniqueness throughout the domain.

4.5 Data Structures to Support this Implementation

The data structures chosen to represent the data in a software system and the pro-
gramming language in which the code is written profoundly affect the system’s implemen-
tation. For this implementation, we have selected the REFINE language and its grammar
processing facility, DIALECT. This choice virtually dictates Architect’s fundamental data
structure: an abstract syntax tree. It also strongly encourages an ob ject-oriented approach,

as DIALECT relies heavily upon objects in its processing.

Figure 4.3 illustrates the hierarchy of object classes developed for this implementa-
tion. USER-OBJECT, the highest level object in the REFINE object class hierarchy, is the
implied parent of each of the boxed object classes in the figure; this parent relationship has
been omitted to allow all other meaningful relationships to be presented in one diagram.
Figure 4.4 illustrates the attributes of each object class; for more detailed and technical

information about these object class attributes, refer to the REFINE code in Appendix D.

4.6 Summary

This chapter presented an overview of the high-level design of Architect, the ap-
plication composition system which was introduced in Chapter 3.5. Architect is heavily
dependent on the software architecture used to produce its compositions; therefore, the
selected architecture (the OCU model) was briefly discussed, as were various adaptations
which were made for this implementation. In addition, the goals/objectives of this appli-
cation composer implementation were enumerated. Lastly, several conventions and data

structures, which are used throughout the system, were presented.

4-16

dx3-jenueuodx3 el el sl jesei
-eey -1e0ew) -ese4 -ony 1
dx3-eAnsod dx3-sqv |dx3-popN . \ / \
dx3 jejen jesel
dx3-erefeN dx3-10N dx3-epiaig dx3-319 -enb3-loN -10qWNN - -uesjoog
h ; _ .oc_:.m leyiuep|
‘ dx3-Adsnn [dx3-19 dx3-enb3 | | >
(5]
3
uoissesdx3-Areun dxg-oengns | (dx3-317 dxg-puy uoisse.dx3-1esen] 3
=
dx3-ppY da-11 dx3-10 3
| 11 || 2
uoisse.ldx3g-Areulg MJ -
_ o n
= -
_||ILj Z,
uojeseacxa la0-uodx3 fa0-uodwi m
la0-IIeD lqo-1ieD l00-I1eD lgo-IeD N 7 =
-8JnByuoD -eZIjenu)| -6lEISIes -81e81) | lao-uodx3-uodw; | o
— Rl
[q0-IeD [qO-1eD [qO-IeD lqo-IeD o
-8ZiliIqelS ->§an_ -uonsun4ies -eyepdn g
| | | =
24N ‘ ‘ ‘ ‘
F#.O.o oﬂ _ lao-weisAsgng
[a0-1uaS-8uM [@0-eD [qo-huis-) IG0-SANWId la0-uoneoyddy

[lgo-enjep-eweN |

qO-ueWeelS

Spec-Obj
(- Spec-Parts

Call-Obj
L operand

Create-Call-Obj

Operand (Inherited)
Object-Type

SetState-Call-Obj
Operand (Inherited)
State-Changes

SetFunction-Call-Obj

Operand (Inherited)
Function-Name
Coefficients
Unary-Expression
Argument

Real-Literal
Real-value

Identifier

id-Name
Id-Source

Figure 4.4. Object Class Attribute Maps

Application-Obj

Application-Components

Application-Update

If-Stmt-Obj

-Cond
Then-Stmts
Else-Stmts

While-Stmt-Obj

While-Cond
While-Stmts

Import-Obj

— Import-Name
~— Import-Category
—— Import-Type-Data
Consumer

— Source

Bi

nary-Expression

— Argument1
-—— Argument2

String-Literal
String-Value

4-18

Subsystem-Obj

Controllees
Import-Area
Export-Area
Update
Initialize
Name-Value-Obj

— Name-Value-Name
— Name-Value-Value

Source-Obj

— Source-Subsystem
— Source-Object

— Source-Name

Export-Obj

Export-Type-Data
= Value
Producer
Boolean-Literal

- Boolean-Value

Integer-Literal
L int-vaiue

V. Detailed Software Design

This chapter presents a detailed design of the Preprocess, Semantic Checks and Ex-
ecute portions of Architect, the application composition system introduced in Section 3.5.
It elaborates on the high-level design of these major functions discussed in Section 4.1,
meets the implementation’s goals/objectives (reference Section 4.3), and conforms to the
conventions identified in Section 4.4.

5.1 Preprocess the Application

After the application is entirely defined, the structured object base contains “com-
plete”, fully-instantiated components (from the application specialist’s viewpoint). How-
ever, some critical data needed for further processing may not yet be specified; preprocess-
ing the application obtains such data from available system knowledge, making it accessible
in a more usable form and, thus, “completing” the specification. Two examples of such
critical, as-yet-unavailable data are subsystem import areas/export areas and the source

of identifiers used in if and while statements in subsystem update procedures.

I Perform-Semantic-Checks

—_— —— — oy —— — — —

Build-Import-Export-Area Determine-Sources-for-Conditionals

Determine-Import-Sources

Figure 5.1. Preprocess Application

A structure chart representing the preprocessing activity is presented in Figure 5.1.
Preprocessing is not an inherent requirement for all application composers; it evolved as
a requirement for this application composer due to our selection of the OCU architectural
model as its basis. Because it may not be required for a different application composer

implementation, preprocessing should be transparent to the application specialist; that is,

5-1

he should be virtually unaware of its existence. Therefore, although it is conceptually a
stand-alone component of this implementation, preprocessing has been incorporated into

the semantic check component.

5.1.1 Building Import and Ezport Areas The contents of an import area depend
upon the external data (input-data) needed by all the primitive objects which are con-
trolled by that subsystem; likewise, a subsystem’s export area depends upon the data
(output-data) produced by all its primitive objects which must be made available to other
subsystems/objects. In keeping with our goal of constraining application specification to
domain-oriented rather than programmer-oriented terms, an application specialist should
not be required to specify the contents of import and export areas of the subsystems in
his application. Moreover, input-data and output-data for each class (or type) of primitive
object are available in the technology base as a consequence of domain analysis. Therefore,
the appropriate data for each import area and export area can be generated automatically,
given a list of the primitive objects which comprise the subsystem (the controls claunse
serves as such alist). This automatic generation of import and export areas is accomplished

via preprocessing.

Figure 5.2 illustrates this process of automatically “building” the import and ex-
port areas. The upper portion of the figure represents a subsystem before preprocessing
is accomplished. Note that its objects “contain” input-data and output-data but that the
import and export areas are empty (input-data can be distinguished by the partitioning of
its rightmost segment into three horizontal parts; this will be explained later). Preprocess-
ing the subsystem transforms it into the representation at the bottom of the figure. Note
that all input-data for all objects within the subsystem have been copied to the import
area and all output-data to the export area. Also, note that the consumer object name
and producer object name have been added to import items and export items, respectively

(in the box, second from the right).

5.1.1.1 BUILD-IMPORT-EXPORT-ARFA Each subsystem in an applica-

tion definition is examined. For each input data item for each primitive object controlled

5-2

import Area Export Area

Controller

' update obj1
update obj2
/;um 1 —

obj1 r } obj2
[wi Jear]wreeer] — F—— [w1 [car2|mooean] ——
[2 [cat2] BOOLEAN — [our{carz]ecoean] | 1
ey O e o B

Import Area \“/ Export Area

G e — N

D — —— 1 il G N
[ne Jeam] eooLea] oBst F—rf /!purqcm] 8ooLEAN] oBJ2]]

pdate obj1 1
zpdd: o PUT2EAT1|INTEGER [oBu2] 1

Sub1 : \ /

I
obj1 { * obj2
[w1 Jeam| wrecen| | a— [fearz[eooiean] —H
Dﬁlum BooLEAN [—:ﬂ F)unlcmiaoowmf | |
i o | O 2

Figure 5.2. Build Import/Export Areas

5-3

Ly the subsystem, an entry is made in the subsystem’s import area; likewise with output

data and the export area.

5.1.2 Determining the Source for Imports Merely specifying the contents of im-
port/export areas is inadequate to complete the application’s specification with respect to
external data requirements. Under the OCU model, a primitive object’s request for a piece
of external data (i.e., an import area entry) is satisfied by retrieving the appropriate data
from an export area in some subsystem within the application. To complete the specifica-
tion, these connections between each item in an import area and the export item which is
to provide its data must be made. In other words, the source of the data for each import

item must be specified. This, too, is accomplished via preprocessing.

When an import can be satisfied by only one export item (see Section 5.1.3), its
source can be automatically determined without user involvement. This is illustrated in
Figure 5.3. IN1, which is needed by OBJ2, and IN2, which is required by OBJ1, are both
of type CAT2; only OUT1, which is produced by OBJ2, can provide this type of data.
Therefore, OUT1 must be the source for these imports. The subsystem name, producing
object name, and output-data name of the source export item appear from top to bottom

in the import item’s rightmost segment.

import Area Export Area

[v fearz[eooLean] oBuz l%
w1 Jcani] wreeen] oss ——] Controller outq cans[wTEGER ['oBut | ;l
[inz JeATe[Bo0EAN] op1 o] puri[carfeooemfosz |]

:g:z: gg; |EUTZ] cATi[INTEGER [oanT j
Subt :

B | —

Figure 5.3. Determine Import Sources — Part 1

However, the source of an import which can be satisfied by more than one export

item can not be determined automatically; the application specialist must indicate which

5-4

potential source should be used. Figure 5.4 represents the state of the import area after

the following source determination dialogue has taken place:

More than one export can provide the data for IN1
which is used by object 0BJ1
in subsystem SUB1
Choose the export item (subsystem and component)
that you wish to be the source of this data:
1> subsystem "SUB1" component "0BJ1" name "OUT1"
2> subsystem "SUB1" component "0BJ2" name "0QUT2"
Enter the number corresponding to the source you want to use
2

Import Area Export Area
[w1 foarz| m&m]gmz@
[t Joarr|wreaen | Wm Controller fourjcari|wmecer foan] |

uugi: gg; foura cari| wreer | oruz [—I

Sub1 : '\ _—

| w2 [caTz]socrean] oaut % /lw‘kﬁrmwrm I 1

Figure 5.4. Determine Import Sources ~ Part 2

Note: these import-to-export connections can be made only after all import/export
areas have been constructed to ensure that all exports are considered as possible import

sources.

5.1.2.1 DETERMINE-IMPORT-SOURCES Each item in the import area of
each subsystem in the application definition is examined. If a source has not yet been
specified for that import, the export areas of all subsystems in the application are searched
for export items which could provide the needed data. Only export items which are of
the same data category as the import item can be considered as potential sources. If
only one export item produces data of the proper category to satisfy an import item, it

is automatically identified as the source. If more than one export item could provide the

5-5

required data, the application specialist is prompted to select the appropriate source from
a list of possible choices, which includes a “use an arbitrary one” option (to be used if the
application specialist doesn’t care where the data comes from; it is anticipated that this
will be rarely used). If a source has been previously specified for the import item, it should
be displayed to the application specialist, who may select a different source at this time,

if desired.

5.1.3 Import/Ezport Considerations The following questions or considerations arose
during different phases of this design and its implementation. When feasible, a rapid proto-
type was constructed to answer these questions and to test various alternatives. There were
two underlying principles which dictated the choices made in answering these questions:
allow maximum flexibility for application specification and free the application specialist

from implementation details as much as possible.

1. How are the external data needed by and produced by a primitive object known?
One aspect of domain analysis is to determine what external information (INPUT-
DATA) is needed to adequately process (update) each class of primitive object and
what information must be made available externally to other objects (OUTPUT-
DATA). Implicit in determining each required INPUT-DATA and OUTPUT-DATA
is the identification of its name, category, and basic data type. Because INPUT-
DATA and OUTPUT-DATA are the same for each object instance in a particular
object class, this information can be pre-stored in the technology base and is therefore
available to be incorporated automatically into each newly created object of that

class.

2. Does each instance of a primitive object import the same value for a given variable
name? It seems likely that different object instances, which require external data
with the same name, may actually wish to obtain that data from different sources.
Therefore, only one entry in the import area for each required external variable name
is insufficient; the name of the requesting object must be maintained as well to ensure
that each primitive object’s external data request accesses the correct import item.

When a piece of external data is required by a primitive object update function,

5-6

both the requested variable name and requesting object’s name (consumer) must
be matched to ascertain the correct import area entry to be used in obtaining the

appropriate requested data.

. Does a subsystem export only one value per variable name? Just as it was likely

that different object instances may obtain INPUT-DATA with the same name from
different sources, it is also likely that more than one object in a subsystem may
produce external data with the same variable name. Therefore, one entry in the
export area per variable name is insufficient; the producing object’s name (producer)
must be maintained as well as the variable name and its associated value. When
data is to be stored into the export area, both variable name and producer name

must be matched to ensure that the correct export item is used.

. How does an object obtain the external data that it requires? External data is

requested via a GET-IMPORT call whose parameters include the name of the data to
be obtained as well as the names of the requesting primitive object and its subsystem.
GET-IMPORT finds the appropriate import item within the subsystem’s import area
which corresponds to this request and uses its previously specified source information

to directly obtain the needed data.

. What is “source information?” It represents a connection between an import item

and the export item within the application which supplies the data to be imported.
Source information consists of the name of the subsystem in whose export area the
“source” export item can be found, the name of the primitive object which produces
that data, and the name of the data itself. This information uniquely describes the

export item from which the imported data is to be retrieved.

. How does an export item qualify as the source of an import item? Each piece of

external data (both imports and exports) has a name, a data category and a data
type. Together with the subsystem name and the name of the consumer/producer
object, the name provides a means to uniquely identify an import or export item.
The data type indicates the item’s primitive data type (integer, real, boolean, string
or symbol); this is used when dealing with identifiers in conditional expressions.

The data category indicates the class of the data, in domain-oriented terms. For

57

example, an import might be expecting a real number (data type) but its category
may be water-temperature or air-pressure or interest-rate, etc., depending on the
requirements of the domain. Only those export items which are of the same data
category can be potential sources for the import. This scheme, in effect, creates
user-defined, domain-dependent data subtypes (very similar to Ada subtypes) which
serve to constrain the possible data choices. In the previous example, although
export items representing water-temperature, air-pressure and interest-rate may all
be real numbers, only the water-temperature export can serve as the source for a
water-temperature import. In the current implementation, data category and data
type are related; all imports/exports of a given category are assumed to be of the
same underlying data type. If this later becomes too restrictive, conversion functions
may be required to allow disparate data types (e.g., integer and real) to be used

interchangeably within a data category.

. What if more than one subsystem and/or object produces external data which qual-
ifies as the source of an import item? If more than one subsystem/object produces
data which can satisfy the request, the application specialist is prompted to indicate
which data should be used to satisfy the request rather than allowing the system to
choose arbitrarily. However, after the appropriate source is specified for a particular
request, the system should not prompt the user again if the same data is later re-
quested by the same object; it should “remember” which subsystem/object produced
the requested data and access it directly. To allow the system to “remember” such
information, source subsystem name and source object name are stored in the import

area in addition to the source’s variable name.

. What if the application specialist doesn’t care where the requested data is obtained?
If only one export item can provide the requested data, it obviously should be used
as the data source. If more than one export item may produce the data, the system
should allow the application specialist to use an arbitrary source if any data of the
proper category will suffice. The “arbitrary source” option is provided in addition
to the specific subsystem/object choices discussed previously. If the application spe-

cialist selects the arbitrary source option, all future requests for the same data by

5-8

the same subsystem will be satisfied by the selection of an arbitrary source which

satisfies the data category requirement.

9. When an application is edited, what happens to the import and export areas of its
subsystems? The edit process can change any/all of the components already in the
application and can also add/delete objects to/from the application. Adding/deleting
objects from subsystems will likely change import and /or export areas; therefore, pre-
processing must be reaccomplished after each edit step. To ensure that preprocessing
is accomplished, a new-data flag is set each time the edit process is initiated. If the
new-data flag is set, preprocessing and semantic checks must be reaccomplished on
the entire application specification before its behavior can be simulated. During
preprocessing, import items are added to the subsystem’s import area if there are
currently no import items for a primitive object and likewise for the export area; this
ensures that import/export areas are consistent for added subsystem components. A
“clean-up” operation is also conducted. Any import item used by a primitive ob-
ject which is no longer part of the subsystem is removed from the import area, and
likewise for the export area; this ensures that import/export areas are consistent for

deleted subsystem components.

5.1.4 Determining the Source of Variables in Conditions If and while statements
within a subsystem update procedure provide the necessary flexibility which enables an
application specialist to precisely specify the required mission for any subsystem. Each of
these statements includes a conditional expression, the result of whose evaluation deter-
mines how the statement will be executed. In general, meaningful conditional expressions
include some variable data whose value changes during the current execution cycle or from
one execution cycle to the next. During specification, the application specification merely
provides a name or identifier for this variable data. To complete the specification, this
identifier must be associated with the data to which it refers. The only data directly
available to the subsystem’s update procedure rcsides in its import and export areas;

therefore, the identifier must be found in one of these areas.

5.1.4.1 DETERMINE-SOURCFES-FOR-CONDITIONALS Each identifier in
each subsystem update procedure in an application definition is examined. If the identifier
has not yet been associated with its corresponding data, the subsystem’s import and export
areas are searched to find potential association candidates. If there is only one possible
candidate, use it as the identifier’s source; if there are multiple potential candidates, present
the list to the application specialist who must select the appropriate one. No possible
candidates indicates a specification error. If the identifier/data association has already been
accomplished, the application specialist is notified, presented with the current association,

and may select a different association, if desired.

5.1.5 Considerations for Variables in Conditional Ezpressions As with the im-
port/export area considerations, these questions concerning variables or identifiers in IF
and WHILE conditional expressions had to be resolved before the design and implemen-

tation could be realized.

1. What variable data (identifiers) can be used in the conditional expressions of if and
while statements in subsystem update procedures? Identifiers must be recognized
by and available to the subsystem in whose update procedure they appear. The
OCU model does not provide a mechanism for a subsystem to directly access any of its
primitive objects’ current-state data. The only data available to a subsystem resides
in its import and/or export areas. Therefore, an identifier can only be associated with
an import or export item. The application specialist specifies the identifier by name;
if an import or export item has the same name, it is a candidate for association. A

specification error occurs if there are no candidates within the subsystem.

2. How do you know that conditional expressions involving identifiers are valid (i.e.,
that you aren’t trying to compare apples and oranges)? Each import and export
item has a “data-type” which corresponds to a REFINE primitive data type (e.g.,
integer, real, string, etc). It is used to ensure that conditional expressions can be

evaluated in a meaningful way.

3. If several imports and/or exports within a subsystem have the same name, how does

the system (and application specialist) determine which one applies to each variable

5-10

used in the conditional? As with determining the sources for imports, Architect
first finds all possible candidates (i.e., imports and exports with the same name as
the conditional variable). If only one item meets that criteria, it is obviously the
intended source and Architect automatically makes the connection. If, however,
there are multiple possible sources, the system prompts the user to select the desired
source from the a list of alternatives. The user may by-pass this source determination
dialogue by “qualifying” the variable name(s) in the conditional. This is achieved by
prefacing the variable name with the object which produces/consumes that item (this
assumes that imports and exports for the same object type do not share common
names). For example, if a variable in a condition refers to the import item named IN1
which is consumed by OBJ1, the user would specify the qualification as 0BJ1.IN1.
After sources for conditionals have been determined, it is impossible to differentiate

between qualified and unqualified variables.

5.2 Perform Semantic Checks

Two levels of semantic checks exist in Architect. Architecture-oriented semantic
checks ensure that the proposed application specification conforms to the composition re-
quirements of the OCU model and that its behavior can be successfully simulated (e.g.,
all components exist in the object base, application/subsystem update procedures directly
reference only components which are part of the same application/subsystem, data input to
one subsystem is produced as output by some subsystem in the application, etc.). Domain-
specific semantic checks are knowledge-based, building on what is known about the domain,
its objects, and previous applications created in that domain, to assist the application spe-
cialist in composing a meaningful and optimized application. This research effort currently
includes only architecture-oriented semantic checks; domain-specific semantic checks are

presently being investigated by Captain Mark Gerken, an AFIT doctoral student.

After preprocessing has been completed, architecture semantic checks are performed.
These semantic checks embody the constraints imposed on the composition of applications
within the framework of the selected architecture model (in this case, the OCU model).

They are derived solely from the structure of the architecture model and are domain-

5-11

independent. Each semantic check is encapsulated into a REFINE function; these functions
are executed via an appropriate sequence of function calls. Domain-specific semantic checks

are completed after the proposed application successfully passes the architecture semantic

checks.
[Perform-Semartic-Checks |
[Cheok-Appiication | | Cheok-Subsystem | Check-for-Exports-
Corresponding-
o-imports
Check-Ht-Application- Check-H-Controliees-
Components-Exist Exist
Check-for-Direct-Use- Check-for-Dupes-in
of-Primitives Subsystem
Check-for-Dupes-in- Check-for-Unused-
Application-Components Components-in-Update
Check-for-Unused- [Check-swsysbm-Updab-
Subsystems-in-Update Procedure .
Check-if-Statement
W“WF ®
Check-1f-Operands- Whi
in-Application Check-While-Stalement
Check-for-Legal-Cak- Check-if-Operand-
Stmis-in-Application in-Subsystem
Check-SetfFunction-
Stmts
Check-SetState-
Stmis

Figure 5.5. Semantic Checks

5.2.1 Architecture Semantic Checks Meaningful architecture semantic checks can
be performed on the entire application and its constituent subsystems. There are currently
no meaningful semantic checks for primitive objects; Architect assumes that primitive
object class definitions and update procedures have been correctly constructed by the

software engineer. A structure chart for processing semantic checks appears in Figure 5.5.

Architecture semantic errors describe conditions that preclude successful behavior
simulation of the application or present an unacceptable inconsistency which can not be
successfully resolved without human intervention. Warnings, on the other hand, represent

apparent inconsistencies in an application specification which may actually presage a com-

5-12

position error but do not preclude behavior simulation. However, they should be carefully
considered by the application specialist before proceeding. The semantic checks in this

implementation generate either errors or warnings, as appropriate.

5.2.1.1 Global Application Specification Semantic Checks The following checks

are conducted on the entire proposed application specified by the application specialist.

1. Each application specification must contain one and only one application executive

object. An example of a very simple application object is:

application applicationl is
controls: subsystemi, subsystem2
update procedure:
update subsystemil

update subsystem2

2. An instance of a primitive object can be part of only one subsystem within an ap-
plication. This restriction is necessary to ensure the integrity of each subsystem.
Only activities within the subsystem (and their inputs) affect the operation of the
subsystem; the states of the objects which comprise a subsystem are changed only
by executing the subsystem’s update procedure. An object instance which is part
of two or more subsystems could cause spurious results because its state would be

determined by multiple subsystems.

3. Each application specification must contain all those (and only those) components
needed to compose the application. Unused subsystems (not included in an appli-
cation’s controls clause nor incorporated into any other subsystem) and primitive
objects (not included in any subsystem’s controls clause) may indicate an oversight
by the application specialist - perhaps he actually intended to use them in the ap-
plication but forgot to do so. If this anomalous condition is discovered, a warning is

issued.

5.2.1.2 Application Ezecutive Semantic Checks The following checks are con-

ducted on each application executive found in the proposed application specification. In

5-13

theory, only one application executive exists per specification. However, in an effort to
provide the application specialist diagnostic information on all anomalies at the earliest

possible phase, all application executives are checked in this manner.

1. CHECK-IF-APPLICATION-COMPONENTS-EXIST: Subsystems listed in the con-
trols clause must already exist (i.e., be specified in the application definition). Note:
although the OCU model allows for dynamic creation of subsystems via an initialize
operation, there are several unaddressed issues regarding dynamic initialization, and

it has not yet been included in this implementation.

2. CHECK-FOR-DIRECT-USE-OF-PRIMITIVES: Only subsystems and subsystem pro-
cedural interfaces may be referenced in an application’s controls clause and update
procedure; direct reference to primitive objects is not allowed. It is unclear whether
the OCU model itself allows arbitrary primitive objects to be included directly in an
application executive; certainly, such statements as “the OCU has most effectively
been applied when the software system under development can be described as a
set of subsysiems” (24:17) imply the contrary. From an implementation viewpoint,
several unresolved issues regarding application executives (e.g., do they have facili-
ties similar to import /export areas and, if so, how should they work? Is it desirable
to have special, primitive objects for executives?) currently preclude the direct use

primitive objects.

3. CHECK-APPLICATION-UPDATE-PROCEDURE: At this time, only call state-
ments (i.e., the OCU subsystem update procedural interface) are valid in the ap-
plication update procedure. If and while statements are not allowed in this very
simple application executive implementation because no appropriate data is available
from which to construct (and evaluate) meaningful conditions. Recall that condition
variables must be accessable at the level at which they are specified and that there is
no provision in the OCU model to query a subordinate object about its state data.
This restriction was overcome for subsystems by associating condition variables with
import /export items. At the present time, no import or export areas are associated

with applications.

5-14

e CHECK-IF-OPERAND-IN-APPLICATION Only subsystems included in the
application’s controls clause may be referenced in its update procedure. This
constraint requires the application specialist to carefully consider which subsys-
tems are needed in his application before thinking about how they are to be
composed. It also allows Architect to compare the controls entries against the

operands in the update procedure as a consistency “double check.”

e CHECK-FOR-LEGAL-CALL-STATEMENTS: Currently, only the update in-
terface is implemented for subsystens; too many unresolved issues remain to
implement the remaining subsystem interfaces (initialize, stabilize, configure
and destroy) at this time. However, in anticipation that future research efforts
will resolve these issues, the OCU grammar accepts these interfaces as valid
keywords; this REFINE function ensures that no attempt is made to actually

execute them.

4. CHECK-FOR-DUPES-IN-APPLICATION-COMPONENTS: Is an application com-
ponent listed more than once in the controls clause? Such a duplication may actu-
ally have been a typographical error and not what the application specialist intended.

A warning is generated.

5. CHECK-FOR-UNUSED-SUBSYSTEMS-IN-UPDATE: Are there any subsystems listed
in the controls clause which are not used as operands in the application’s update
procedure? Such an omission may have been an oversight and additional state-
ment(s) should have been included in the update procedure to execute these sub-
systems. Or, the subsystem in question may have been included in the controls

clause erroneously. A warning is generated.

5.2.1.3 Subsystem Semantic Checks The following checks are conducted on

each subsystem found in the proposed application specification.

1. CHECK-IF-CONTROLLEES-EXIST: Components (subsystems and primitve ob-
jects) listed in the controls clause must already exist. Note: although the OCU

model does allow for dynamic creation of subsystems via an initialize operation and

5-15

primitive objects via the create interface, there are several unaddressed issues regard-
ing such dynamic creation; therefore, the create and initialize interfaces have not yet

been incorporated into this implementation.

. CHECK-SUBSYSTEM-UPDATE-PROCEDURE: All of the statements within the
subsystem’s update procedure must be examined to ensure that only legal actions
are specified. Various semantic checks are executed, depending on the type of state-

ment encountered.

o CHECK-IF-STATEMENT: If conditions must be valid — each condition must
be reduceable io a boolean expression, all identifiers referenced must be available
in the subsystem’s import and/or export area, data types within the condition
must be compatible with each other and with the operation specified (e.g., arith-
metic operations can not be performed on data of type STRING). In addition,
all the statements within the if statement (both the then and else clauses)

must be valid.

e CHECK-WHILE-STATEMENT: While conditions must conform to the same
restrictions as if conditions; during semantic checking, no distinction is made
between if and while conditions. In addition, all statements within the while

loop must be valid.

e CHECK-IF-OPERAND-IN-SUBSYSTEM: Controllers (i.e., subsystem update
procedures) may access only those components (subordinate subsystems and
primitive objects) which are part of the subsystem (that is, included in its
controls clause). Currently, the application specialist indicates which compo-
nents are part of the subsystem and then specifies the update procedure for the
subsystem. This semantic check is actually a consistency check to ensure the
controls clause and update procedure are compatible. This check is applied

to all call statements.

— Should the application specialist be required to explicitly specify the com-
ponents which comprise a subsystem? Doing so allows the above described

consistency check between the controllees and the update procedure to be

5-16

performed as a “double check”; this check has proved helpful during testing
to keep the application specification “on-track.” Or, should the aggrega-
tion be implicit based on the components included in the update procedure?
This approach would make it tedious to check which components comprise

the subsystem and does not allow the “double check” mentioned.

e CHECK-SETFUNCTION-STMT: The function name and coefficients specified
in a setfunction statement must be valid. That is, the function.name must
identify an existing function and the parameters of that function must include
a primitive object of the same type as the object specified as the operand of
the setfunction statement. Each coefficient specified must be valid for the

statement’s operand.

— Should the application specialist be required to specify the complete func-
tion name (which may be quite long and code-like, especially if it is prefaced
by its associated object class type as Architect requires)? Or, should the
application specialist be required to identify just the latter portion of the
name, the distinguishing part? Keep in mind, the entire function name can
be generated by Architect easily by prepending the object class of the state-
ment’s operand to this distinguishing name. In an effort to keep Architect
very domain-oriented rather than programming-oriented, we have opted to
take the latter approach, constructing the entire function name given just

its distinguishing portion.

o CHECK-SETSTATE-STMT: State variables and their new values specified in a
setstate statement must be valid. That is, the variable name must identify an
actual attribute of a primitive object of the same type as the object specified as
the operand of statement and the new value must be of the same data type as
required for that attribute. Note: as with the function names in setfunction
statements and for the same reason, the application specialist specifies just the
distinguishing part of each attribute name; Architect automatically generates
the complete name by prepending the object class name to this distinguishing

part.

5-17

3. CHECK-FOR-EXPORTS-CORRESPONDING-TO-IMPORTS: Input data required
by one subsystem must be produced as output data by another subsystem within
the application. If no subsystem exports data which can serve as the source for the

input-data, the execution simulation can not be processed correctly.

e This check ensures that, for each imnport item, at least one export item can
be found that produces suitable data, i.e., that some subsystem is potentially
capable of producing the needed data. It can not, however, assure that the cor-
rect data is actually available when needed during the behavior simulation. For
example, assume that SUBSYSTEM1 produces an export named OUTPUT1 of
category TYPE1 and SUBSYSTEM2 requires an import named DATA?1 of cate-
gory TYPEL. If SUBSYSTEM2 is executed before SUBSYSTEM1, OUTPUT1
will not actually be available when needed. Further, using the above example,
even if SUBSYSTEM1 is executed before SUBSYSTEMZ2, there is no guarantee
that a valid OUTPUT1 will be available to SUBSYSTEMZ2; it could be produced

in a conditional statement whose condition is not met during execution.

4, CHECK-FOR-DUPES-IN-SUBSYSTEM: Is a subsystem ccmponent listed more than
once in the controls clause? Such a duplication may actually have been a typograph-

ical error and not what the application specialist intended. A warning is generated.

5. CHECK-FOR-UNUSED-COMPONENTS-IN-UPDATE: Are there any subsystems
or primitive objects listed in the controls clause which are not used as operands in
the subsystem update procedure? Such an omission may have been an oversight
and other statements need to be added to the update procedure. Or, the subsys-
tem/primitive object may have been included erroneously in the controls clause. A

warning is generated.

5.3 Simulate Ezecution

After the proposed application specification passes all semantic checks, it is fully
specified and there are no obvious specification errors which would preclude behavior sim-

ulation. Ideally, this behavior simulation or execution demonstrates to the application

5-18

—————]

specialist that the application he has specified does, indeed, behave as intended. If the
application does not behave as intended, the application specialist may edit the offend-
ing application specification to “correct” it or may begin again with another complete

application definition.

Find-and-Execute-Application

Execute-Statement
Do-Call-Stmt Do-if-Stmt rDo-While-Stmt
SetFunction Execute-Statement Execute-Statement

SetState

Execute-Subsystem

|
Execute-Statement

Figure 5.6. Execute Application

Figure 5.6 presents a structure chart illustrating the behavior simulation process. Ap-
plication execution is accomplished by invoking EXECUTE-STATEMENT for each state-
ment in the application update procedure. Semantic checks have already verified that all
the statements within this update procedure are call statements (i.e., updates) whose
opzrands are subsystems — due to the simplicity of the currently implemented application
executive, if and while statements are not allowed in the application executive’s update

procedure.

The mission of a subsystem is performed by EXECUTE-SUBSYSTEM, which calls

EXECUTE-STATEMENT for each statement in the subsystem’s update procedure. EXECUTE-

5-19

STATEMENT performs the appropriate action for the type of statement (e.g. call, if,

while) encountered.

5.8.1 Call statements Call statements are processed by DO-CALL-STATEMENT,

which performs the appropriate function based on the type of call requested.

e update If the operand of the update is a subsystem, EXECUTE-SUBSYSTEM is
called to perform its mission. If the operand of the statement is a primitive object, the
current value of UPDATE-FUNCTION is retrieved and serves as the first parameter
to the lisp FUNCALL function. The value of this first parameter determines which
REFINE function is to be invoked. Thus, FUNCALL provides a mechanism which
allows dynamic, run-time determination of the function to be called and allows the

behavior simulation code to remain domain-independent.

Figure 5.7 depicts the syntax and semantics of an object update call. The syntax for
the call is presented, followed by a sample statement. The rectangle represents the
statement’s operand, widget1i. The current value of widgeti’s update-function (in
this case, widget-obj-updatel) becomes the first parameter to the lisp FUNCALL
function; its succeeding parameters serve as parameters to the function invoked by

FUNCALL (in this case, widget-obj-updatel).

update <object-name>

example: update widget1
widgeti

update-function |widget-obj-update1| -~ funcall(widget-obj-updatel,
subsystem1, widget1)

Figure 5.7. Primitive Object Update Execution

5-2(0)

e setfunction The update-function of the statement’s operand is replaced by the
function name specified in the statement. In addition to changing the value in
its operand’s UPDATE-FUNCTION, the setfunction statement also provides the
means to change the current value of any or all of its operand’s coefficients. This is
pictured in Figure 5.8 which shows the statement’s syntax and a sample statement,
as well as the effect of executing that sample statement. Because one of our goals is to
make application specification a domain-oriented rather than programmer-oriented
process, the application specialist is not required to (in fact, should not) specify the
entire update function name; the entire name is constructed by prepending the name
of the primitive object’s object class to the function name specified by the appli-
cation specialist. Note: the semantic checks, which must be successfully performed
before the behavior simulation can begin, assure that the specified function name

and coefficient/value pairs are legal.

setfunction <object-name> <new-update-function-name> (coefficienty, new-valueq)*

example: setfunction widget1 update2 (coefl, 15) (coef2, 4.7)

widget1 widget1
L. (coefl, 40) (coefl, 15) .
coefficients (coef2, 1.9) (coef2, 4.7) coefficients
——————l
update-function [widget-obj-update1 [widget-obj-update2| ypdate-function

Figure 5.8. SetFunction Execution

e setstate Setstate enables the application specialist to directly change the value of
any of its operand’s attributes (unlike the OCU model, this implementation does
not make a distinction between “attributes,” “state data,” and “constants,” all of
which may be changed via setstate). The syntax, a sample statement and the
effect of executing that statement are depicted in Figure 5.9. As with the update

function name, the entire attribute name is automatically generated by prepending

5-21

the operand’s object class to the attribute names specified by the application special-
ist. Again, note: the semantic checks, which must be successfully performed before
behavior simulation can begin, assure that the specified attribute names and their

new values are legal.

setstate <object-name> (attributeq, new-vaiueq)*

example: setstate widgeti (a, 14) (b, 5.5)

widget1 widget1
. > .
b . .
attributes widget-obj-a: 20 widget-obj-a: 14 attributes
widget-obj-b: 0.0 widget-obj-b: 5.5
widget-obj-c: "off" widget-obj-c: “off"

Figure 5.9. SetState Execution

5.3.2 1f Statements If statements are executed via DO-IF-STMT. If the IF-COND
evaluates to true, the statements following the then are executed. If the IF-COND eval-
uates to false, the statements following the else are executed (or the statements fol-
lowing the end if if no else is specified). The condition is evaluated via EVALUATE-
BOOLEAN-EXPRESSION; the then and else statements are executed by a sequence of
calls to EXECUTE-STATEMENT.

5.3.3 While Statements While statements are executed via DO-WHILE-STMT.
The WHILE-COND is evaluated; if it is true, the statements within the while loop are
executed via calls to EXECUTE-STATEMENT and then the WHILE-COND is reevalu-
ated. Execution continues in this manner until the WHILE-COND evaluates to false, at

which time execution proceeds to the statement following the end while.

5-22

5.4 Summary

This chapter presented a detailed design of the Preprocess, Semantic Checks, and
Execute portions of Architect, the application composition system which was implemented
during this research effort. Where relevant, detailed discussions of design considerations

and implementation alternatives were presented to explain the decisions that were made.

5-23

VI. Validation Domain

To demonstrate the suitability and effectiveness of Architect, the application com-
position system described in the previous chapters, one must select a domain, conduct a
analysis of that domain, construct an appropriate technology for it, and compose useful
applications within that domain. This chapter examines the domain that was selected for
this validation process: logic circuits. After a discussion of the domain analysis, the valida-
tion results are summarized and an assessment of the application composer’s performance

is presented.

6.1 Background

To further understand the OCU software architecture model and its implications,
Architect was first tested using a pedagogical domain consisting of gadgets, widgets, things,
contraptions and glibsnitzes. This nonsensical domain enabled us to concentrate on the
fundamentals of implementing the OCU model, free of the built-in biases, constraints,
and limitations inherent in a “real” domain. This freedom allowed experimentation with
various implementation strategies, with the goal of developing a very general approach

which could be used successfully on all future application domains.

Because there were no constraining associations between the domain’s objects and
“real world” entities, domain modeling was trivial. However, an effort was made to provide
each class of primitive object with at least one attribute/state data, covering the gamut of
REFINE data types to ensure that Architect could effectively handie each one. In addition,

object update functions were developed to be fully capable of exercising all aspects of the

OCU model.

The knowledge and experience gained through experimentation with this pedagogical

domain allowed a smooth transition into the official validation domain.

6.2 Logic Circuit Domain

A subset of the logic circuit domain was chosen as the validating domain for this

application composer. It is well-known, well-understood, can be used to compose a wide

6-1

variety of practical applications, and the behavior of its components can be easily described
(an important consideration given the limited time resources available for this research
effort). Refer to Appendix A for a standard template for describing a primitive object
within this application generation system. Appendix E contains the logic circuit domain

modeled in the REFINE language.

6.2.1 Domain Analysis - Part I

6.2.1.1 Identification of Primitive Objects The first step of the domain anal-
ysis was to determine which objects should be included in the validating domain. The

following were obvious choices for primitive objects within the domain:

AND gate

OR gate

NAND gate

NOR gate

NOT gate

In the real world, none of the above objects has persistent state data that helps to
determine the result of its next update; state data is a key aspect of the OCU model
from which we developed this application composition system. Although the following
component could be constructed from the gates identified above, it was included as a

primitive object to provide an example of state data manipulation.
e JK FLIP-FLOP

The implemented application composer uses a simplified application executive which
does not support external I/0O. Therefore, all data used in the application must be gener-
ated within the application and any data produced by the application which is of interest
to the application specialist must be handled within the application itself. To accommo-
date these temporary restrictions, the following objects were included in the domain to

generate data and display it to the application specialist, respectively:

6-2

e SWITCH
e LED (light emitting diode)
6.2.1.2 Identification of State, Attribute and Constant Data Unlike the OCU
model upon which it is based, this implementation makes no distinction among these

categories of information which pertain to primitive domain objects. All of these data are

treated in the same manner and stored as REFINE object attributes.

e AND gate, OR gate, NAND gate, NOR gate, NOT gate

gate delay: integer

manufacturer: string

meets military specifications?: boolean

power required by/consumed by gate: real

e JK FLIP-FLOP

gate delay: integer

manufacturer: string

meets military specifications?: boolean

power required by/consumed by gate: real

set-up delay: integer
~ hold delay: integer

— state: boolean
¢ LED

~ manufacturer: string

~ color of display: symbol

e SWITCH

6-3

— manufacturer: string

— debounced?: boolean

gate delay: integer

position of switch: symbol (on or off)

6.2.1.3 Identification of Object Update Functions Under the OCU model, an

object’s behavior is encapsulated in its update function.

e AND gate: The gate’s output is the result of the bovlean AND operation on its two

inputs.

e OR gate: The gate’s output is the result of tL: boolean OR operation on its two

inputs.

e NAND gate: The gate’s output is the inverse of the boolean AND operation on its
two inputs. See Table 6.1.

Table 6.1. Truth Table - NAND gate
[X[Y[XNAND Y|

ofo 1
0|1 1
110 1
111 0

o NOR gate: The gate’s output is the inverse of the boolean OR operation on its two

inputs. See Table 6.2.

Table 6.2. Truth Table - NOR gate
[X]Y[|XNORY |
010 1

01 0
1(0 0
1)1 0

e NOT gate: The gate’s output is the inverse of its input.

6-4

e JK FLIP-FLOP: If there is no clock input (i.e., it is false), the flipflop’s state does
not change. If there is a clock input, the flip-flop’s state may change depending on
the inputs and its current state. The truth table for a JK FLIP-FLOP appears in
Table 6.3.

Table 6.3. Truth Table — JK FLIP-FLOP
[clock |[J|K]| NewQ | New Q |

0 |x|x old Q ~ (oldQ)
1 0|0 old Q | ~ (0ldQ))
1 0|1 0 1

1 1{0 1 0

1 1|1~ (oddQ)| oldQ

e SWITCH: If the switch is in the “on” position, its output is true; if the switch is in

the “off” position, its output is false.

e LED: The LED displays, in English, the value of its input.

6.2.1.4 Identification of Object Input-Data and Output-Data As previously
described, under the OCU model, input-data represents external data required by an object
to effect its update properly; output-data represents data from an object’s update which
must be made available to other objects in the application. With the identification and

description of the update functions for each primitive object, this data is now obvious.

e AND gate, OR gate, NAND gate, NOR gate:

— Input-data: inl, in2 = signal data whose primitive data type is boolean.

— Output-data: outl = signal data whose primitive data type is boolean.

e NOT gate:

— Input-data: inl = signal data whose primitive data type is boolean.

— Output-data: outl = signal data whose primitive data type is boolean.

¢ JK FLIP-FLOP:

— Input-data: J, K, clock = signal data whose primitive data type is boolean.

6-5

— Output-data: Q, Q-bar = signal data whose primitive data type is boolean.
e SWITCH:

— Input-data: none.

— Output-data: outl = signal data whose primitive data type is boolean.
e LED

— Input-data: inl = signal data whose primitive data type is boolean.

— Output-data: none.

6.2.2 Domain Analysis — Part II The logic circuit domain, as defined in Sec-
tion 6.2.1, proved to be inadequate to fully demonstrate all aspects of the application
composer implemented during this research effort. Specifically, each primitive object’s
behavior can be fully specified using a single update function; Architect’s capability to
dynamically change from one update function to another and, thus, to change an object’s
behavior could not be demonstrated in a meaningful way. In addition, no primitive ob-
jects possessed any coefficient data; the ability to change the effects of a particular update
function by changing the value of one or more coefficients used in its calculation could not
be shown. This shortcoming in the logic circuit domain was overcome by adding a new
primitive object (COUNTER) and by adding an additional update function for the LED
object.

6.2.2.1 Identification of Primitive Objects The following primitive object was
added to those already identified in Section 6.2.1.1:

e COUNTER

6.2.2.2 Identification of State, Attribute and Constant Data No changes were
necessary to this descriptive information previously identified in Section 6.2.1.2. For the

newly identified primitive object:
e COUNTER

6-6

{

gate delay: integer

~ manufacturer: string

{

meets military specifications?: boolean

— power required by/consumed by gate: real

i

count (state data): integer

6.2.2.3 Identification of Object Update Functions Except for LED, all the

update functions identified in Section 6.2.1.3 are unchanged.

e LED:

— T-F-UPDATE: If the input is true, display “true” else display “false”.
— ON-OFF-UPDATE: If the input is true, display “on” else display “off”.
e COUNTER: If the reset input is true, set counter to 0 else if the clock input is true,
add one to the counter. If the count is greater than the maximum value for the

counter, reset counter to 0. The maximum value for the counter is a coefficient; it

can be dynamically modified during behavior simulation.

6.2.2.4 Identification of Object Input-Data and Outpui-Data All input-data
and output-data identified in Section 6.2.1.4 remain unchanged. Input-data and output-

data for the new primitive object follow:

e COUNTER:

— Input-data: clock, reset = signal data whose primitive data type is boolean.

— Output-data: Isb (least significant bit), msb (most significant bit) = signal data

whose primitive data type is boolean.

6.2.2.5 Identification of Coefficient Data Coeflicients, if applicable for an ob-
ject, are used in calculating its new state; changing a coefficient can alter the object’s

behavior or state calculation. The following coefficients apply to this domain:

6-7

e COUNTER

— max-count: Represents the maximum value to which the counter can count.
Because the counter’s output is limited to two bits (to simplify the connection
process), permissible values for max-count are the integers, 0-3. The default

value is 3.

6.2.3 Domain Analysis — Part III The logic circuit domain identified and described
in Sections 6.2.1 and 6.2.2 is adequate to construct any desired electronic circuit; its prim-
itive objects are the fundamental building blocks of all real-world circuits. However, com-
posing large scale circuits from these very primitive components is tedious, at least partially
due to the current lack of an effective visual interface. Inclusion of “higher-level primi-
tives,” objects which can be constructed from combinations of existing primitive objects
but are treated as primitive objects within the framework of this system, can simplify this
tedious connection process for larger circuits. Furthermore, these higher-level primitives
illustrate an important concept: what constitutes a “primitive object” depends on the

context in which it is to be used.

6.2.3.1 Identification of New Primitive Objects The following “higher-level”
primitive objects were added to the logic circuit domain to simplify the connection process
for large circuits as well as to illustrate the feasibility/utility of including “higher-level

primitives” within a domain:

DECODER (3-to-8 Line)

HALF ADDER

MULTIPLEXER (4-Input MUX)

6.2.3.2 Identification of State, Atiribute and Constant Dala

e DECODER

— delay: integer

— manufacturer: string

6-8

— meets military specifications?: boolean

— power required by/consumed by component: real

e HALF ADDER

delay: integer

manufacturer: string

meets military specifications?: boolean

power required by/consumed by component: real

e MULTIPLEXER

delay: integer

manufacturer: string

meets military specifications?: boolean

power required by/consumed by component: real
6.2.3.3 Identification of New Object Update Functions

e DECODER: The three inputs, taken together, represent a three-digit binary number.
One of the eight output lines (numbered 0-7) is set to true depending on the value of
this binary number. The truth table for a 3-to-8 line decoder appears in Table 6.4.

Table 6.4. Truth Table — 3-t0-8 Line Decoder
(X[Y[Z{mo|m [my]|ms]|my|ms|ms|ms]
ojofo] 1 0 0 0 0 0 0 0
010}1 0 1 0 0 0 0 0 0
0oj1]0]) O 0 1 0 0 0 0 0
0|11 0 0 0 1 0 0 0 0
1100 O 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
111104 0 0 0 0 0 0 1 0
1|11f{1¢(o 0 0 0 0 0 0 1
6-9

e HALF ADDER: The two inputs, each representing a single binary digit, are added
together, producing the sum output. The second output, carry, represents the carry-
out and is set if the sum can not be represented in one binary digit. The truth table

for a half adder appears in Table 6.5.

Table 6.5. Truth Table — Half Adder
[XY [Sum | Carry |

070 0 0
0f1 1 0
110 1 0
111 0 1

e MULTIPLEXER: Two of the inputs (the “select” lines) determine which one of the
other four inputs will be used to set the output. The function table for a 4-input

multiplexer appears in Table 6.6.

Table 6.6. Truth Table — 4-Input Multiplexer

(51 [so [Output |

0|0 I
011 L
1(0 I
171 I3

6.2.3.4 Identification of New Object Input-Data and Output-Data

e DECODER:

— Input-data: inl, in2, in3 = signal data whose primitive data type is boolean.

— Output-data: m0, m1, m2, m3, m4, m5, m6, m7 = signal data whose primitive

data type is boolean.
e HALF ADDER:

— Input-data: inl, in2 = signal data whose primitive data type is boolean.

— Output-data: s (sum), ¢ (carry) = signal data whose primitive data type is

boolean.

6-10

e MULTIPLEXER:

— Input-data: in0, inl, in2, in3, s0, s1 = signal data whose primitive data type is

boolean.

— Output-data: outl = signal data whose primitive data type is boolean.

6.3 Summary of Results for the Logic Domain

Using Architect, several electronic circuits were constructed from the primitive ob-
jects of the logic circuit domain and their behaviors simulated. In all cases, when the
application was specified and composed properly (that is, all import-export connections
were correctly made), the expected results were achieved. Table 6.7 lists some of the
circuits tested during this validation phase and summarizes certain statistics about their

compositions. Examples of these composed circuits are contained in Appendix C.

Table 6.7. Summary of Validation Results

| Circuit | Number of Primitives l[Number of Connectiom
Decoder from low-level primitives 30 43
Decoder from high-level primitive 12 11
Full Adder 13 16
BCD Adder 43 61
Binary Array Multiplier 14 16
Universal Shift Register 25 44

6.4 Conclusions

The pedagogical domain of widgets, gadgets, etc. proved extremely useful during
initial testing of the system’s application composer. Its non-association with “real world”
entities provided a freedom to fully explore the mechanics of implementing various aspects
of the OCU (primarily import/export issues), as well as a suitable base from which to
test the system’s manipulation of all REFINE primitive data types. A pattern evolved in
creating primitive object descriptions which became the standard template to be followed
for all such descriptions, regardless of domain. Its nonsensical nature further underscored

the need to keep the application composer free of domain-specific references.

6-11

The application composer performed very well when the the pedagogical domain was
replaced by the logic circuit domain. The semantic analysis and behavior simulation pro-
cesses required no modifications. However, with the advent of a real domain, shortcomings
were identified with the import/export process. Originally, imports were associated with
their corresponding exports by matching data names only. In a pedagogical domain that
could be constructed in any manner to suit the circumstances, this was no disadvantage.
With a real domain, this scheme for matching imports to exports was quickly exposed as
inadequate and overly restrictive. Import/export names were retained for internal refer-
ence only and an import/export data category was added. The data category, described
in Section 5.1.3, serves as the discriminator for determining potential import/export con-
nections; this is its sole function. This system modification, though made in response to
the logic circuit domain, is clearly an improvement which will likely satisfy most other

application domains.

Proper analysis of any potential domain is essential to maintaining the application
composer’s domain independence. The composer must be free of inappropriate, domain-
specific adaptations which would further complicate software maintenance and limit Ar-
chitect’s usefulness and flexibility. Difficulties in modeling the domain must be carefully
evaluated before modifications to the composer are considered to accommodate pecularities
of the domain: can the domain be described in different manner to overcome this apparent
problem? is the proposed modification applicable to other domains? During logic circuit
domain analysis, for example, various aspects of the domain appeared to be difficult ‘o
model. In most cases, an alternative modeling approach was found to represent the infor-
mation within the context of the existing composition system. In one case mentioned in
the previous paragraph, the proposed modification was deemed to be appropriate for most

other domains as well; the change was incorporated into Architect.

Architect is a domain-independent system. Its straightforward design easily accom-
modated its extension into the logic circuit domain. Rigorous adherence to the paradigm
established by the primitive object template discussed in Appendix A results in primitive
objects which fit properly into Architect’s framework. This is a flexible system which

appears to be capable of being used for a wide variety of application domains.

VII. Conclusions and Recommendations

This chapter provides a summary of the accomplishments of this thesis effort. It also
discusses the conclusions which can be drawn from this work and presents some recom-

mendations for further research.

7.1 Summary of Accomplishments

The objective of this research was stated in Chapter I:

Develop a formalized model of a software architecture and implement it within
a domain-specific application composition system.

To that end, the current literature on software architectures was examined and various
architectures evaluated in an attempt to find an existing one suitable for composing appli-
cations within our system. One such architecture, the Object-Connection-Update model
which was developed by the Software Engineering Institute, was studied at length and was
ultimately selected:

e It had been used successfully to design and implement various other projects at the

SEI and AFIT (23, 7, 40)
o It was described, in considerable detail, in several publications (23, 24, 42)
e It was capable of supporting our application composition system.
The OCU model was formalized using the REFINE wide-spectrum language into a formally

specified, executable prototype. This prototype of the application composer was validated

using the logic circuit domain.

7.2 Conclusions

The following general conclusions can be drawn from this research:

7-1

1. Application composition systems, such as that described in Chapter III, are feasible.
This was clearly demonstrated in Appendix C, where several complex logic circuits

were constructed using Architect.

2. Non-programmers, who are very knowledgeable about a particular domain, can create
quite sophisticated applications without the direct assistance of software profession-
als. These application specialists, armed only with detailed knowledge about their
own domains and an application composition system with an appropriately mod-
eled domain-specific technology base, can quickly construct effective (they behave as

intended) applications to satisfy virtually any requirement within the domain.

3. A suitable software architecture is an essential ingredient of a flexible, domain-
independent application composition system. The software architecture allows the
system/application designer to concentrate on the fundamental elements of construct-
ing a system/application: what components must be included and what connections
are appropriate among those components. How those connections are actually made
is the software architecture’s concern. This separation of concerns allows the focus
to be on what should be constructed, not how it is to be implemented; we can expect

such a focus to produce better designed, more reliable systems.

The following specific conclusions can be drawn about Architect, the application

composition system which was developed during this thesis effort:

1. Architect works. A wide range of electronic circuits were constructed during testing,

some of which are presented in Appendix C.

2. Architect is readily extensible. Initially, to demonstrate the feasibility of the sys-
tem concept and to evaluate various implementation strategies (primarily for im-
port/export areas), a pedigogical domain was used. It was a simple matter to re-
orient the system to the logic circuit domain, an effort which required only three
manhours (the time needed to created a new domain-specific language and technol-
ogy base). Changing domains required no modifications to the composition system

source code; only the domain-specific technology base (and DSL) required changes.

7-2

-

The template in Appendix A should be helpful to software engineers who must main-

tain the technology base.

. Domain analysis is critical. An application composition system provides only the
framework around which domain applications can be constructed; the technology
base supplies the details. The contents of the technology base depend directly upon
the results of a domain analysis. An ideal domain analysis will identify all the ap-
propriate objects within the domain and will describe them properly (attributes,
input-data, output-data, update functions, etc.); virtually any meaningful applica-
tion within the domain can be constructed when all the necessary objects are prop-
erly identified. A typical domain analysis will omit some necessary domain objects
and/or improperly describe them; applications can not be composed correctly if the
necessary components are not available and can not behave as required if the compo-
nents are incorrectly defined. The good news: because Architect is easily extensible,

oversights and incorrectly defined objects can be quickly fixed once identified.

. Software engineers who work with Architect must clearly understand the OCU model
and its implementation. A domain analysis may identify a situation which apparently
can not be accommodated by the OCU model. For example, if a primitive object
has two update functions, each of which performs a different operation with different
input-data and output-data (a situation which can not be handled by the model),
an unwary software engineer might be tempted to change the implementation to

accommodate it.

. Making connections between import items and the export items that are to provide
their data requests can be very tedious in some domains using the current system;
a glance at some of the application specifications in Appendix C clearly illustrates
this point. The visual system will alleviate this problem. However, even without the
visual system, meaningful, complex applications can be constructed; it just takes a

bit of time and effort.

. The use of the Software Refinery environment, with its integrated language definition
facility (DIALECT), graphical user interface (INTERVISTA), and programming lan-

guage (REFINE) which incorporates many built-in object manipulation functions,

7-3

7.3

greatly simplified and expedited the implementation of Architect. With DIALECT,
parsers for domain-specific and architecture languages were easily generated from
simple BNF descriptions of the languages. Output from these DIALECT-generated
parsers was automatically converted into an abstract syntax tree format and stored
in the structured object base. The REFINE language’s built-in functions provide an
easy way to manipulate the object base and its standard programming language con-
structs supply the functionality expected of any high-level programming language; in
fact, its direct support of set theory and set-based operations provides more power
than can be achieved with most commonly used languages. The availability of these
powerful, well-integrated tools eliminated the need to write comparable tools; this

significantly shortened the development process.

Recommendations for Further Research

The following issues should be addressed in future reseach efforts:

. Code generation ~ The application composition system described in Chapter III

includes a formal specification generation capability which is intended to feed an
automatic code generator. Currently, the behaviors of application specifications,
which are created by application specialists, can be simulated to verify that behavior.
However, this is merely a simulation and is neither robust nor efficient enough to

support a production system.

. Extending Domains — Architect, as currently implemented, does not provide any au-

tomated support for extending the domain knowledge which resides in the domain
model. Extensions to the domain model must be made manually and are limited
by the knowledge and understanding of the domain engineer. The Kestrel Interac-
tive Development System (KIDS) should be studied to ascertain its ability to allow

automated extensions to Architect’s domain models.

. Application executive - Only a very simple application executive was considered in

this implementation. This “application executive” was merely a specialized, highest

level subsystem. Obviously, such a simple approach is inadequate for most mean-

7-4

ingful, production domains. What should be the role of an executive? How does
the executive interface with the environment to obtain the necessary external data?
Can the executive perform in a real-time environment with concurrency and time
constraints? These questions must be answered before a full-scale, production appli-

cation composition system can be developed.

. Additional validating domains — We have demonstrated that an application composi-
tion system is feasible. However, application compositions need to be attempted in a
wider variety of real-world domains to further assess its strengths and shortcomings.
One domain to consider for such further evaluation is the simulation domain for the

Joint Modeling and Simulation System (J-MASS).

. Alternatives to the OCU model - The complete OCU model as described in (24)
has not been implemented. Certain changes (for example, the omission of several
subsystem and object procedural interfaces) were made to the model to accommodate
the time limitation of this research effort and to conform with certain predetermined
requirements (e.g., that all objects would be created during the specification, not

dynamically at run-time). Other changes should also be considered. For example,

e the model does not currently allow a subsystem to directly query a subordinate
object concerning its state data; this would seem to be a desirable feature,

especially when dealing with if and while statement conditions.

o there is currently no way to “hide” exports inside a subsystem (that is, to
prevent them from being used outside the subsystem; all exports are treated
alike and may be used for the source of any compatible import. Within the
validating domain, there were many instances where “intermediate” outputs
were produced and consumed within a single subsystem; there was never any
intention to use these “intermediate” results in any other subsystem. In fact,
using such “intermediate” results would likely produce an incorrect composition.

But, in keeping to the OCU model, all exports are globally accessable.

The OCU model must be carefully studied within the context of this application

composition system and its suitability further evaluated. Additional tests may dis-

7-5

cover that it is too restrictive (or permissive) to allow appropriate compositions for

all domains of interest.

7.4 Final Comments

The application composition system developed during this thesis effort is a signif-
icant first step in a software development revolution. Software engineers will no longer
develop systems to satisfy a single, unique requirement (complicated though it may be);
end users will create their own applications, without intervention by computer profession-
als. Long waits for inadequate, often unreliable and incorrect software products will be
only a distant memory. Software maintenance, once the major expense in any software
system’s lifecycle, will be an issue no longer; application specifications, not source code,
will be maintained by the end users themselves. Software development teams will be
composed of domain engineers, software engineers, and application specialists; knowledge
about domains must be formalized, application composition and generation systems must
be developed/maintained, and problems within a domain must be analyzed, evaluated and

solved.

7-6

Appendix A. Requirements for Specifying Primitive Objects

Architect, which was implemented in this research effort, is predicated on the as-
sumption that all primitive objects are defined in a precise, standardized manner by the
software engineer. This appendix provides a template to be used by the software engineer
when creating a definition for all primitive object classes within any domain and explains

the significance of the mandatory items.

INPUT- DATA {(name, category, type-data, ,)... }
OUTPUT- DATA {(name, category, type-data, ,)... }
COEFFICIENTS {(name, value) ... }

UPDATE- FUNCTION | function-name

Attributes, Current-State, Constants

variable4
variables

variablep

Figure A.1. Standard Primitive Object Definition

A.1 Primitive Object Definition Template

Figure A.1 illustrates the standard template for all primitive object definitions. It is

based on the kinds of data available to primitive objects as described by the OCU model.

A-1

See Appendix E for examples of primitive object definitions from the logic circuit domain

used to validate this implementation.

A.1.1 INPUT-DATA INPUT-DATA describes the data which is external to the
object but is needed to update it. INPUT-DATA is implemented as a set of IMPORT-
OBJ objects; during preprocessing (BUILD-IMPORT-EXPORT-AREA), each entry in the
set becomes a part of the import area of the subsystem which “controls” that primitive

object.

e IMPORT-NAME: identifies the name by which this piece of data will be referred. In
the object’s update function, this name must appear in a GET-IMPORT function
call to obtain the data’s actual value. Additionally, the name will be displayed
to the application specialist during preprocessing (BUILD-IMPORT-SOURCES) to
uniquely identify this input-data item when more than one piece of external data can

serve as its source.

o IMPORT-CATEGORY: identifies the type of the external data required, in domain-
oriented terms. For example, one might specify that the data must be of the category
“temperature” or “time,” rather than merely a real number or an integer. This is
analogous to the Ada programming language which encourages the use of subtypes
to further constrain the possible values which a given variable can accept. Only
EXPORT-OBJs with the same category can be considered as potential sources for

this input-data item.

o IMPORT-TYPE-DATA: identifies the primitive data type of the required data. This
data type is used only for checking and evaluating the expressions in if and while
statements. The current implementation accommodates only primitive data types

(integer, real, boolean, string and symbol).

A.1.2 OUTPUT-DATA OUTPUT-DATA describes the data which the object must
make available externally to other application components. It is implemented as a set of

EXPORT-OBJ objects; during preprocessing (BUILD-IMPORT-EXPORT-AREA), each

A-2

entry in the set becomes a part of the export area of the subsystem which “controls” that

primitive object.

o EXPORT-NAME: identifies the name by which this piece of data will be referred. In
the object’s update function, this name must appear in a SET-EXPORT function call
to make the new value accessible to other application components. Additionally, the
name will be displayed to the application specialist during preprocessing (BUILD-
IMPORT-SOURCES) to uniquely identify this output-data as a possible source when
more than EXPORT-OBJ can serve as the source for an IMPORT-OBJ.

e EXPORT-CATEGORY: identifies the type of the external data (OUTPUT-DATA)
produced, in domain-oriented terms. OUTPUT-DATA can be used only by those

import items which have the same category.

¢ EXPORT-TYPE-DATA: identifies the primitive data type of the required data. This
data type is used only for checking and evaluating the expressions in if and while
statements. The current implementation accommodates only primitive data types

(integer, real, boolean, string and symbol).

A.1.3 COEFFICIENTS In the OCU model, coefficients represent data which can
be used in an object’s update function to alter the behavior or performance of the object.
In this implementation, coefficients are expected to have a default value, determined by
the domain analysis, and can be modified, as necessary, at any point in the execution via

a setfunction statement in the subsystem’s update procedure.

A coefficient is represented as a NAME-VALUE-OBJ: NAME-VALUE-NAME is the
name of the coefficient (to be used in the update function when referencing this coefficient)
and NAME-VALUE-VALUE is the current value associated with the coefficient. The
coefficient’s value is not constrained by a particular data type; rather, it is implemented as
a REFINE ANY-TYPE which, as its name implies, allows any type of data to be stored.
This requires that the software engineer ensure compatibility of data types between default
coefficient values and their usage in object update functions. In addition, it imposes a

responsibility on the application specialist to provide compatible data when specifying

A-3

new values for coefficients in setfunction statements; no semantic checks can ensure data
consistency before behavior simulation. This may appear to unduly burden the application
specialist; however, this approach provides the flexibility needed to accommodate any

potential domain’s requirements for number and type of coefficients.

A.1.4 UPDATE-FUNCTION This variable stores the name of the function cur-
rently used to update the brimitive object. During behavior simulation, when an update
statement for a primitive object is encountered, Architect retrieves the name of the func-
tion to be used for updating from this variable and calls the indicated function to complete
the operation. It is expected that domain analysis will have identified a “normal” or de-
fault update function for each primitive object class. An alternate update function can
be specified at any time during behavior simulation via a setfunction statement in the
subsystem’s update procedure; subsequent update statements applied to that cbject will

use this new update function.

A.1.5 Attributes, Current_State, Constants Although the OCU model considers
these to be different kinds of data, this implementation makes no such distinctions; all
are modeled as REFINE attributes of a primitive object. A strict interpretation of the
OCU model would allow only current_state data to be modified directly by a setstate
statement; the current implementation allows any of this data to be changed. If it becomes
necessary or desirable to do so, enforcing these distinctions could be accomplished via a
naming convention scheme; as an example, attributes (object characteristics) could be
represented with the letters “ATTR” imbedded within attribute names, “STATE” within

current_state names and “CONST” within the names of constants.
A.1.6 Miscellaneous

e All primitive object definitions must begin with an object class specification. This
implementation assumes that each primitive object class name consists of the kind
of real-world object represented by the class followed by “-OBJ” (e.g. AND-GATE-

OBJ). This class name (minus the “-OBJ”) appears in the domain-specific grammar

when specifying (i.e., creating) the object instances which are to be part of the

application.

All variable names associated with an object are prefaced by the complete object
class name. This ensures that variable names are unique - the software engineer
can use descriptive, domain-oriented names for all variables without being concerned
that some other class of primitive object might already have a variable with the
same name. It also allows the application specialist to refer to variables in setstate
statements by just this domain-oriented name; Architect can assemble the entire
variable name by prefacing the given name with the object class of the statement’s

operand.

All update functions are included in the primitive object definition. Each update
function is coded as a REFINE function whose parameters include the subsystem

which controls the primitive object being updated and the primitive object itself.

Appendix B. Guide to Using the Application Composer

Maintaining a computer program, especially one written by a colleague who is no
longer available for consultation, can be a daunting task. This appendix attempts to ease
that burden somewhat by providing detailed, technical information needed to execute the
application composer. The intended users of this guide are the software engineers who will
be tasked to extend the capabilities of this composer. It is not written for the software
engineers who create and maintain domain-specific languages and technology bases; helpful

information of this nature can be found in Appendix B of (33).

B.1 Getting Started

The application composer must execute within the Software Refinery environment
which must be accessed through an Emacs process. To enter the Software Refinery Envi-

ronment:

1. From a command or shell window, set the current directory to that which contains
Architect.

2. Invoke Emacs (emacs or emacs& to run in the background).

After the large Emacs window appears, start Software Refinery by pressing <esc> (which
causes the cursor to jump to the lower left corner of the Emacs window) and typing
run-refine. After a short initialize phase during which various messages will be displayed

on the right side of the Emacs window, Software Refinery will be ready for use.

The application composer’s executable code modules (suffixed by .fasl must be
loaded before Architect can be executed; if no executable modules exist, they must be
created via a compile step. There are many dependencies among the many files which
comprise Architect. Therefore, to ensure all files are compiled and/or loaded in the proper
order, it is recommended that a “load” file (to load all executable modules) and a “compile-
and-load” file (to compile source code modules and load the newly created executable

modules) be used. The “compile- and-load” file for Architect is listed in Section B.3.

B-1

A “compile-and-load” file is actually a lisp function whose name follows defun (this
discussion also applies to “load” files). This function must be loaded into the Refine
object base before it can be executed. This is accomplished by typing (load "cl") at
the Refine prompt (.>), where cl corresponds to the name of the lisp function. After the
function is loaded, it can be executed by typing (cl). Execution of the function causes
each designated file to be compiled and loaded, in turn. Note: the DIALECT system must
be loaded first ((load-system "dialect" "1-0")).

B.2 Using the Application Composition System

Now that Architect is loaded, it is ready for use. If the user wants to employ the full
capabilities of the composition system, he should refer to the instructions in Appendix A

of (33).

However, if the user’s focus is strictly the application composer itself (i.e., he is not
interested in using generic components, loading previously saved components/architectural
fragments, nor editing application definitions), the easiest and fastest method of populating
the structured object base is via parsing. This is accomplished using the left side of the
Emacs window. First, establish it as the “active” window by moving the cursor there
and clicking the right mouse button. Then type as desired using the Emacs editor. Or,
textual application definitions may be loaded from any file by typing <ctrl> x <ctrl> f,
and completing the file pathname that appears at the bottom of the window. When the
desired application definition appears in the left window, parse it into the Refine object

base as follows:

1. Move the cursor to the beginning of the definition and type <esc><space> to mark
the beginning of the parse block.

2. Move the cursor just beyond the end of the definition and type esc><space> to mark
the end of the block.

3. Move the cursor back to the top of the block and <esc> w to move the block into
the Emacs buffer.

4. Move the cursor to the right side of the Emacs window, establish it as the “active”
window, and type at the Refine prompt:

(\#> <ctrl>y <ctrl>)

Note: <ctrl> y causes the contents of the Emacs buffer to be “dumped” into a the
Refine parse command (#>).

Upon successful completion of the parse command, the application definition is stored
as an abstract syntax tree (AST) in the Refine object base. The root of that AST is now
the “current node;” this is significant as Refine rules operate only on the current node.
In the present implementation, the user interacts with Architect by invoking applicable
rules. The list of currently applicable rules can be obtained by typing (rs) (“rule search™).
After deciding what he wants Architect to do, the user applies the chosen rule by typing
(ar n) where n is the number of the appropriate rule. The user is prompted through any

interactions which result from applying that rule.

If the user is interested only in the preprocess, semantic-check, and execute system
components, a simplified the application composer can be used. The required models for
the simplified version are listed in their compilation order in Figure B.1. It should be noted
that the user never loses the ability to “edit,” “load,” and “store” application definitions,
even with this simplified system. Because all objects must have unique names, reparsing
a modified copy of the original application has the effect of “editing” the application. We
have already seen how application definitions can be “loaded” from a text file; application

definitions can be “saved” into a text file via the Emacs command, <ctrl> x <ctrl> s.

B.3 “Compile-And-Load” File for the Application Composition System

Including the following “compile-and-load” file into this user’s guide accomplishes

two objectives:

1. It lists the files which are required to execute Architect within the logic circuit do-
main.

2. It establishes a compilation order to accommodate program dependencies.

\begin{singlespace}
(defun c1()

dialect
lisp-read.lisp
dm-ocu
gram-ocu
set-debug
globals
imports—-exports
eval-expr
execute

domain-specific
technology base
files

semantic—checks
gram-dsl

Figure B.1. Compilation Order for Simplified Application Composer System

B-4

(load-system "dialect" "1-0")

(compile-file "./0CU-dm/dm-ocu")
(load *./0CU-dm/dm-ocu")

(compile-file "./0CU-dm/gram-ocu")
(load "./0CU-dm/gram-ocu")

(compile-file “./DSL/globals")
(load "./DSL/globals")

(compile-file "./DSL/lisp-utilities.lisp")
(load "./DSL/lisp-utilities.lisp")

(compile-file "./DSL/obj-utilities")
(load "./DSL/obj-utilities")

(compile-file "./DSL/read-utilities")
(load "./DSL/read-utilities")

(compile-file "./DSL/erase")
(load "./DSL/erase")

(compile-file "./DSL/menu")
(load "./DSL/menu")

(compile-file "./DSL/display-files")
(load "./DSL/display-files")

(compile-file "./DSL/modify-obj")

(load "./DSL/modify-obj")

(compile-file "./DSL/save")
(load "./DSL/save")

(compile-file "./DSL/generic")
(load "./DSL/generic")

(compile-file "./DSL/build-generic")
(load "./DSL/build-generic")

(compile-file "./DSL/complete")

(load "./DSL/complete”)

(compile-file "./0CU/set-debug")

(load "./0CU/set-debug")

(compile-file "./0CU/imports-exports")
(load "./0CU/imports-exports")

(compile-file "./0CU/eval-expr")
(load "./0CU/eval-expr")

(compile-file "./0CU/execute")
(load "./0CU/execute")

(compile-file "./0CU/semantic-checks")

(load "./0CU/semantic-checks")

(compile-file "./domain-model/and-gate")

B-6

(load "./domain-model/and-gate")

(compile-file "./domain-model/or-gate”)

(load "./domain-model/or-gate")

(compile-file "./domain-model/nand-gate")

(load "./domain-model/nand-gate")

(compile-file "./domain-model/nor-gate")

(load "./domain-model/nor-gate")

(compile-file "./domain-model/not-gate")

(load "./domain-model/not-gate")

(compile-file "./domain-model/switch")

(load "./domain-model/switch")

(compile-file "./domain-model/jk-flip-flop")
(load "./domain-model/jk-flip-flop")

(compile-file "./domain-model/led")
(load "./domain-model/led")

(compile-file "./domain-model/counter")

(load "./domain-model/counter")

(compile-file "./domain-model/decoder")

(load "./domain-model/decoder")

(compile-file "./domain-model/half-adder")

B-7

(load "./domain-model/half-adder")

(compile-file "./domain-model/mux")

(load "./domain-model/mux")
(compile-file "./domain-model/gram-logic")

(load "./domain-model/gram-logic")

(in-grammar °’circuits)
)
\end{singlespace}

B-8

Appendix C. Validation Test Cases and Results

This appendix presents a subset of the circuits from the logic circuit domain which
were constructed to demonstrate the utility of Architect, the application generator imple-
mented during this research. Each test case is presented in the following consistent format:
the objective to be achieved, an illustration of the circuit/application to be tested, the ap-
plication specification written in the domain-specific language and system/user dialogues
during the test. Please note: the system/user dialogues have been editted. During actual
execution of Architect, the complete list of possible import sources is presented to the ap-
plication specialist each time one is requested; I have retained only the first such display,

deleting the repetitive ones to conserve paper.

C.1 Decoder Test

This test case consists of two independent 3-to-8 line decoders: one constructed from
very low-level logic gates (AND, NOT), the other from the domain’s decoder primitive
object. Each decoder was provided the same input values to demonstrate the equivalence
of the two circuits. It also includes a second execution of the same application with
different input values. This illustrates two points: 1) the application works correctly with
a different set of values and 2) a different user interface is used when import-to-export
connections already exist. An additional point should be noted: the primitive decoder
is much easier to use than the one constructed from low-level logic gates. This should
be a fundamental lesson for the domain engineer: if a particular subsystem will be used
repeatedly by application specialists working within the domain, it may be advisable to
encapsulate that subsystem into a “high-level primitive” to simplify subsequent application

specifications.

C.1.1 Circuit Diagram See Figure C.1 for a decoder implemented as a subsystem
composed from low-level logic gates. Figure C.2 illustrates a decoder primitive. Both have

been included in the specification for this test case.

C.1.2 Application Specification — Test 1

application definition test~decoders-primitive-and-subsystem

switch sub-z position: on
switch sub-y position: on
switch sub-x position: on

switch z position: on
switch y position: on
switch x position: on

not-gate not-sub-z
not-gate not-sub-y
not-gate not-sub-x

and-gate andO1i
and-gate and02
and-gate andil
and-gate and12
and-gate and21
and-gate and22

) == {owd— (o

o) —foy—

ez (50
NOT-SUB-Z

| SUB-Z|L
[suB-Y}- j@P AND4Z (sus4)

[

= o))
SUB-X
s
_1AND71 AND72

Figure C.1. 3-to-8 Line Decoder (Subsystem)

H

C-3

DECODE1

3466088k

7

Figure C.2. 3-to-8 Line Decoder (Primitive)

and-gate and31
and-gate and32
and-gate and41
and-gate and42
and-gats andbl
and-gate andb2
and-gate and61
and-gate and62
and-gate and71
and-gate and72

led sub-m0
led sub-mil
led sub-m2
led sub-m3
led sub-m4
led sub-mb
led sub-m6
led sub-m7

led mO
led mi
led m2
led m3
led m4
led mb
led mé
led m7

decoder DECODE1

application decoder-tests is

C-4

contreols: decoder-subsystem,
decoder-primitive
update procedure:
update decoder-subsystem
update decoder-primitive

subsystem decoder-subsystem is
controls: sub-z, sub-y, sub-x, not-sub-z, not-sub-y, not-sub-x,
and01, and02, and11, andi12, and21, and22, and31, and32,
and41, and42, and51, and52, and61, and62, and71, and72,
sub-m0, sub-mi, sub-m2, sub-m3, sub-m4, sub-m5, sub-m6,
sub-m7
update procedure:

update sub-z

update sub-y

update sub-x

update not-sub-z

update not-sub-y

update not-sub-x

update and0O1

update and02

update andiil

update andi2

update and21i

update and22

update and31t

update and32

update and41

update and42

update andb1

update andb2

update and6i

update and62

update and71

update and72

update sub-m0

update sub-ml

update sub-m2

update sub-m3

update sub-m4

update sub-mb

update sub-mé

update sub-m7

subsystem decoder-primitive is
controls: x, y, z, DECODE1l, mO, mi1, m2, m3, m4, m5§5, m6, m7
update procedure:
update z
update y
update x
update DECODE1

v

C-5

upd
upd
upd
upd
upd
upd
upd
upd

ate mO
ate ml
ate m2
ate m3
ate mé
ate mb5
ate mé
ate m7

C.1.3 System/User Dialogue - Test 1

.> (#> application definition test-decoders-primitive-and-subsystem)
application definition
TEST-DECODERS-PRIMITIVE-AND-SUBSYSTEM

SUB-Z SUB-Y SUB-X Z Y X NOT-SUB-Z NOT-SUB-Y NOT-SUB-X ANDO1
ANDO2 AND11 AND12 AND21 AND22 AND31 AND32 AND41 AND42 ANDS51
AND52 AND61 AND62 AND71 ARD72 SUB-MO SUB-M1 SUB-M2 SUB-M3
SUB-M4 SUB-M5 SUB-M6 SUB-M7 MO M1 M2 M3 M4 M5 M6 M7 DECODE1

DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE

> (rs)

- Rules for: application definition
TEST-DECODERS-PRIMITIVE-AND-SUBSYSTEM
SUB-Z SUB-Y SUB-X Z Y X NOT-SUB-Z NOT-SUB-Y NOT-SUB-X ANDO1

ANDO2 AND11 AND12 AND21 AND22 AND31 AND32 AND41 AND42 AND51
ANDE2 AND61 ABD62 AND71 AND72 SUB-MO SUB-M1i SUB-M2 SUB-M3
SUB-M4 SUB-M5 SUB-M6 SUB-M7 MO M1 M2 M3 M4 M5 M6 M7 DECODE1
DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE -

2) CHECK-
.> (ar 2)

SEMARTICS

More than one export can provide the data for IN1
which is used by object SUB-M7

in subsystem DECODER-SUBSYSTEM
Choose the export item (subsystem and component)

that you wish to

1>
2>
3>
4>
6>
68>
™
8>
9>
10>
11>
12>
13>
14>
15>
16>

subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem

"DECODER~SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER~SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"

be the source of this data:

component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component

C-6

"SUB-Z" name "QUT1"
"SUB-Y" name "OUT1"
"SUB-X" name "OQUT1"
"NOT-SUB-Z" name "OQUT1"
"NOT-SUB-Y" name "0UT1"
"NOT-SUB-X" name "QUT1"
"ANDO1" name "OUTL"
"ANDO2" name "OUT1"
"AND11" name "OUT1"
“AND12" name "QUT1"
"AND21" name "QUT1"
“AND22" name "QUT1"
"“AND31'" name "OUT1"
"AND32" name "OUT1"
"AND41" name "QUT1"
"AND42" name "OUT1"

17>
18>
19>
20>
21>
22>
23>
24>
25>
26>
27>
28>
29>
30>
31>
32>
33>
34>
Entexr the
22
More than
Enter the
20
More than
Enter the
18
More than
Enter the
16
More than
Enter the
i4
More than
Enter the
12

subsystem
subsystenm
subsystem
subsystem
subaystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem

“DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-SUBSYSTEM"
"DECODER-PRIMITIVE"
"DECODER-PRIMITIVE"
"DECODER~PRIMITIVE"
“DECODER-PRIMITIVE"
“DECODER-PRIMITIVE"
"DECODER-PRIMITIVE"
“DECODER-PRIMI{IVE"
"DECODER-PRIMITIVE"
"DECODER-PRIMITIVE"
"DECODER-PRIMITIVE"
"DECODER-PRIMITIVE"

Specific source not required;
number corresponding to the source you want to use

component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component

“ANDB1"
IIAND52II
"ARD61"
“AND62“
"AND71" name "OQUTL"
"AND72" name "OUT1"
"x'l name lloUTill
IIYII name IIOUTIII
llzll name NOUTIII
“"DECODE1" name
"DECODE1" name
“DECODE1" name
"DECODE1" name
"DECODEL" name
“DECODE1" name
"DECODE1" name
"DECODE1" name

"0UT1 n
IIOUT1 [1]
IIOUT1 n
llou‘r1 [1]

name
name
name
name

"Ho"
IIH1 [1]
"Hzll
llus“
IIH4|I
“Hsll
IIHG n
llH7ll

use arbitrary omne

one export can provide the data for IN1
which is used by object SUB-M6

in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object SUB-M5

in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object SUB-M4

in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object SUB-M3

in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object SUB-M2

in subsystem DECODER-SUBSYSTENM
number corresponding to the source you want to use

More than

Enter the
10

More than
Enter the
8

More than
Enter the
3

More than
Enter the
21

More than
Enter the
2

More than
Enter the
1

More than
Enter the
3

More than
Enter the
19

More than

one export can provide the data for IN1
which is used by object SUB-M1
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object SUB-MO
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND72
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND72
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND71
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND71
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND62
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND62
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND61
in subsystem DECODER-SUBSYSTEM

C-8

Enter the
2

More than

Enter the
4

More than

Enter the
3

More than
Enter the
17

More than
Enter the
5

More than
Enter the
1

More than
Enter the
3

More than
Enter the
16

More than
Enter the
5

number corresponding to the source you want to use

one export can provide the data for INi
which is used by object AND61
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND562
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND52
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object ANDS1
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND51
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND42
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN%
which is used by object AND42
in subasystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND41
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

C-9

More than

Enter the
4

More than

Enter the
6

More than

Enter the
13

More than

Enter the
2

More than

Enter the
1

More than

Enter the
6

More than

Enter the
11

More than

Enter the
2

More than

one export cam provide the data for IN1
which is used by object AND41
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND32
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by cbject AND32
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND31
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND31
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND22
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND?2
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND21
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND21
in subsystem DECODER-SUBSYSTEM

C-10

Enter the
4

More than
Enter the
6
More than
Enter the
9
More than
Enter the
b
More than
Enter the
1
More than
Enter the
8
More than
Enter the
7
More than
Enter the
3
More than
Enter the
4

number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND12
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND12
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object ANDii
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND11
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object ANDO2
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object ANDO2
in subsystem DECODER-SUBSYSTEM
nuwber corresponding to the source you want to use

one export can provide the data for IN2
which is used by object ANDO1
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object ANDO1
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

C-11

More than

Enter the
3

More than

Enter the
2

More than

Enter the
1

More than

Enter the
33

More than

Enter the
32

More than

Enter the
31

More than

Enter the
30

More than

Enter the
20

More than

one export can provide the data for INi
which is used by object NOT-SUB-X
in subsystem DECODER~SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object KOT-SUB-Y
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object NOT-SUB-Z
in subsystem DECODER-SUBSYSTEM
number corresponding to the source you want to use

one export cam provide the data for IN1
which is used by object M7
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object M6
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object M6
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object M4
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object M3
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object M2
in subsystem DECODER-PRINITIVE

C-12

Enter the
28

More than

Enter the
27

Moxe than

Enter the
26

More than

Enter the
25

More than

Enter the
24

More than

Enter the
23

number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object M1
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object MO
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN3
which is used by object DECODE1
in subsystem DECODER-PRIMITIVE
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object DECODE1
in subsystem DECODER~PRIMITIVE
number corresponding to the source you vant to use

one export can provide the data for INi
which is used by object DECODE1
in subsystem DECODER~-PRIMITIVE
number corresponding to the source you want to use

Rule successfully applied.
application definition
TEST~DECODERS-PRIMITIVE-AND-SUBSYSTEM
SUB-Z SUB-Y SUB-X Z Y X KOT-SUB-Z NOT-SUB-Y KOT-SUB-X ANDO1

ANDO2
AND52

AND11 AND12 AND21 AND22 AND31 AND32 AND41 AND42 AND51
AND61 ANDE62 AND71 AND72 SUB-MO SUB-M1 SUB-M2 SUB-M3

SUB-M4 SUB-M6 SUB-MG6 SUB-M7 MO M1 M2 M3 M4 M5 M6 M7 DECODE1
DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE

C-13

C.2 Full Adder Test

This case tests a full adder. It is constructed of two half adders: one is a subsystem
composed of low-level primitives, the other is the domain’s “higher level primitive.” This
test demonstrates the interchangeability of subsystem versus “higher level primitives” in

application specifications.

C.2.1 Circuit Diagram See Figure C.3.

b,.
T o
m XHA2$ s
Y _ o
|-

Figure C.3. Full Adder

C.2.2 Application Specification

application definition test-full-adder

switch x position: on
switch y position: on
switch carry-in position: off

not-gate not-x
not-gate not-y

and-gate andi
and-gate and2
and-gate and3
or-gate oril

or-gate or2

C-14

led s
led ¢

half-adder HA2

application full-adder-test is
controls: full-addexr
update procedure:
update full-adder

subsystem full-adder is
controls: half-adder-subsystem, HA2, or2, carry-in, s, c
update procedure:
update carry-in
update half-adder-subsystem
update HA2
update or2
update s
update ¢

subsystem half-adder-subsystem is

controls: x, y, not-x, not-y, andi, and2, and3, oril
update procedure:

update x

update not-x

update y

update not-y

update andi

update and2

update oril

update and3

C.2.3 System/User Dialogue

.> (#> application definition test-full-adder)
application definition TEST-FULL-ADDER
X Y CARRY-IN NOT-X KOT-Y AND1 AKD2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM
.> (rs)
- Rules for: application definition TEST~FULL-ADDER
X Y CARRY-IN NOT-X NOT-Y ARD1 AND2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM -
2) CHECK-SEMANTICS
.> (ar 2)

More than one export can provide the data for IN1
which is used by object C

C-15

that you wish to

subsystem
subsystem
subsystem
subsystenm
subsysten
subsystenm
subsystem
subsystenm
subsystenm

in subsystem FULL-ADDER
Choose the export item (subsystem and component)
be the source of this data:

"FULL-ADDER” component
"FULL-ADDER" component
“FULL-ADDER" component
"FULL-ADDER" component
“HALF-ADDER-~SUBSYSTEM"
"HALF-ADDER-SUBSYSTEM"
"HALF-ADDER-SUBSYSTEM"
"HALF-ADDER-SUBSYSTEM"
“HALF-ADDER-SUBSYSTEM"

"HA2" name
"HA2" name
"OR2" name
“CARRY-IN"
component
component
component
component
component

IISII

"C"

IIOUT1 [1]

name "QUT1™
llxll name IIOUTIII

ICY" name IIOUT1 ”"

"NOT-X" name "OUT1"
"NOT-Y" name "OUT1"
"AND1" name "OUT1"

10> subsystem "HALF-ADDER-SUBSYSTEM" component "AND2" name '"QUT1"
subsystem "HALF-ADDER-SUBSYSTEM" component "AND3" name "QUT1"
subsystem "HALF-ADDER-SUBSYST
Specific source not required; use arbitrary one

number corresponding to the source you want to use

1>
2>
3>
4>
5>
6>
™
8>
9>
11>
12>
13>

Enter the

3

More than

Enter the

1

More than

11

More than

Enter the

2

More than

Enter the

4

More than

Enter the

12

More than

one export can provide the data for IN%

which is used by object S
in subsystem FULL-ADDER

number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR2
in subsystem FULL-ADDER

one export can provide the data for IN1

which is used by object OR2
in subsystem FULL-ADDER

number corresponding to the source you want to use

one export can provide the data for IN2

which is used by object HA2
in subsystem FULL-ADDER

number corresponding to the source you want to use

one export can provide the data for IN1

which is used by object HA2
in subsystem FULL-ADDER

number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object DRI
in subsystem HALF-ADDER-SUBSYSTEM

C-16

" component "OR1" name "OUT1"

Enter the
10

More than
Enter the
9
More than
Enter the
6
More than
Enter the
5
More than
Enter the
6
More than
Enter the
T
More than
Enter the
8
More than
Enter the
b
More than
Enter the
8

number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR1
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND3
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND3
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND2
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND2
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export ¢an provide the data for IN2
which is used by object AND1
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for INI
which is used by object AND1
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object NOT-Y
in subsystem HALF-ADDER-SUBSYSTEM
number corresponding to the source you want to use

C-17

More than one export can provide the data for INi
which is used by object NOT-X
in subsystem HALF-ADDER-~SUBSYSTEM
Enter the number corresponding to the source you want to use
5
Rule successfully applied.
application definition TEST-FULL-ADDER
X Y CARRY-IN NOT-X NCT-Y AND1 AND2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM
> (z8)
- Rules for: application definition TEST-FULL-ADDER
X Y CARRY-IN NOT-X NOT-Y AND1 AND2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM -
1) DO-EXECUTE
2) CHECK-SEMANTICS

.> (ar 1)
LED S = QFF
LED C = ON

Rule successfully applied.
application definition TEST-FULL-ADDER
X Y CARRY-IN NOT-X NOT-Y AND1 AND2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM

C-18

C.3 BCD Adder

This test case constructs a circuit which can be used to add two one-digit decimal
numbers. Note that one-digit decimal number can range from 0 - 9; therefore four binary
bits are needed for its computer representation which is called Binary Coded Decimal or
BCD. Table C.1 provides a comparison between BCD and binary number representations

(27:250). It can be used to verify the results of the constructed circuit.

Table C.1. BCD/Binary Comparison

EIES AR EAS ENEAEAEN|
00

0100 ojojoj0]|0}oO
0100|101 H40[0}0]0]1 1
6jlojo0oj1{offoj0 0| 1;0¢{ 2
ojojoj1f1HHoj0(0]1¢}1 3
0lo0[1j0]O0OyO0}jO0o]1])]0}0]¢|4
0Ojo0o|110]|1fO0ojoOof1])]0]{1 5
00 (1110640101 }1};0Lle6
gjof1j1)1fforoj1i{1}1 7
o1 |0}l0]j]OfOoO]1|O0O)O0|Of¢ 8
0}j1 (001 0] 1]|]0j)0}1 9
oj1joj1f{offrjofofo|0}10
0140 (1{1{1y0(0|0]|1¢{11
oj1(1j0joOofl1}ioto!l1,0/{12
oj1]|]1yo0f1(ffrjofof1]1]13
0ol1f{1)13041j0)1 0] 0] 14
oj1j1i1frffrjofrlo]|1]15
1016 |10;0 311012121016
1tfojofjofLjjry0 11117
1fo0jo0j1f(fOofj1|1]0]|0]0If|18
1107011)1]1)]0)]0] 119

C.3.1 Circuit Diagram See Figure C.4 ,(27:252).

C.3.2 Application Specification

application definition test-BCD-adder

switch a0 position: on
switch ai position: off
switch a2 position: off
switch a3 position: on

C-19

switch b0
switch bi
switch b2
switch b3

position:
position:
position:
position:

on
off
off
on

Figure C.4. BCD Adder

switch cacry-in position: off

switch zero position: off

half-adder
half-adder
half-adder
half-adder
half-adder
half-adder
half-adder
half-adder

half-adder
half-adder
half-adder
half-adder
half-adder
half-adder
half-adder
half-adder

HA111
HA112
HA121
HA122
HA131
HA132
HA141
HA142

HA211
HA212
HA221
HA222
HA231
HA232
HA241
HA242

or-gate oriiil
or-gate ori2i
or-gate ori3i
or-gate ori4i

C-20

or-gate or211l
or-gate or221
or-gate or231
or-gate or241

or-gate oril
or-gate or2

and-gate andl
and-gate and2

led si
led 82
led s4
led s8
led carry-out

application BCD-adder-test is
controls: BCD~adder
update procedure:
update BCD-adder

subsystem BCD-adder is
controls: four-bit-adderi, four-bit-adder2,
andi, and2, ori, or2,
a0, al, a2, a3, b0, b1, b2, b3, carry-in, zero,
s1l, 82, s4, 88, carry-out
update procedure:

update a0

update al

update a2

update a3

update b0

update b1l

update b2

update b3

update carry-in

update four-bit-adderi

update andi

update and2

update oril

update or2

update zero

update four-bit-adder?

update si

update s2

update s4

update s8

update carry-out

C-21

subsystem four-bit-adderi is
controls: full-adderill, full-adderi12i, full-adderi131i, full-adderi4i
update procedure:
update full-adderiiil
update full-adderi2i
update full-adderi3i
update full-adderi4i

subsystem full-adderiil is
controls: HA113, HA112, oriit
update procedure:
update HA111
update HA112
update oriiil

subsystem full-adderi21 is
controls: HA121, HA122, ori21
update procedure:
update HA121
update HA122
update ori2i

subsystem full-adder131 is
controls: BA131, HA132, ori3i
update procedure:
update HA131
update HA132
update ori3i

subsystem full-adderi4l is
controls: HA141, HA142, ori4l
update procedure:
update HA141
update HA142
update ori4i

subsystem four-bit-adder?2 is
controls: full-adder21i1, full-adder221i, full-adder231, full-adder24i
update procedure:
update full-adder2il
update full-adder221
update full-adder231
update full~adder241

subsystem full-adder211 is
controls: HA211, HA212, or211
update procedure:
update HA211
update HA212

C-22

update or211

subsystem full-adder221 is
controls: HA221, HA222, or22t
update procedure:
update HA221
update HA222
update or221

subsystem full-adder231 is
controls: HA231, HA232, or231
update procedure:
update HA231
update HA232
update or23i

subsystem full-adder241 is
controls: HA241, HA242, or241
update procedure:
update HA241
update HA242
update or241

C.3.3 System/User Dialogue

.> (#> application definition test-~BCD-adder)
application definition TEST-BCD-ADDER
A0 A1 A2 A3 BO B1i B2 B3 CARRY-IN ZERO HA11i HA112 HA121

HA122 HA131 HA132 HA141 HA142 HA211 RA212 HA221 HA222 HA231
HA232 HA241 HA242 OR111 OR121 OR131 OR141 OR211 OR221 OR231
OR241 OR1 OR2 AND1 AND2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241

> (rs)

- Rules for: application definition TEST-BCD-ADDER

A0 A1 A2 A3 BO B1 B2 B3 CARRY-IN ZERO HA111 HA112 HAi121

HA122 HA131 HA132 HA141 HA142 HA211 HA212 HA221 HA222 HA231
HA232 HA241 HA242 OR111 OR121 OR131 OR141 OR211 OR221 OR231
OR241 OR1 OR2 AND1 AND2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241 -

2) CHECK-SEMANTICS

.> (ar 2)

More than one export can provide the data for INK1

which is used by object CARRY-OUT
in subsystem BCD-ADDER

C-23

Choose the export item (subsystem and component)
that you wish to

1>
2>
3»
4>
5>
6>
>
8>
9>

10>
11>
12>
13>
14>

15>
16>
17>
18>
19>
20>
21>
22>
23>
24>
26>
26>
27>
28>
29>
30>
31>
32>
33>
34>
36>
36>
37
38>
39>
40>
41>
42>
43>

45>
416>
47>
48>
49>

subsysten
subsystem
subsystenm
subsystem
subsystem
subsystenm
subsystem
subsystenm
subsysten

subsystem
subsystem
subsystem
subsystem
subsystem

subsystem
subsystem
subsystenm
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystenm
subsysten
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subaystem
subsystenm
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem
subsystem

“BCD-ADDER"
"DCD-ADDER"
“*BCD-ADDER"
"“BCD-ADDER"
"BCD~ADDER"
"BCD-ADDER"
“"BCD-ADDER"
*BCD-ADDER"
"BCD-ADDER"
“‘BCD-ADDER"
“BCD-ADDER"
"BCD-~ADDER"
*“BCD-ADDER"
"BCD-ADDER"

be the source of this

component
component
component
component
component
component
component
component
component
component
component
component
component
component

data:
“AND1" name "OUT1"
"AND2" name "QUT1L"
"OR1" name "OUT1"
“OR2" name "“OUT1"
ll‘o" name IIOUT1 n
ll‘1ll name "0UT1“
I|A2N name "0UT1“
llAs" name .lOUTIII
"Boll name lloU'rl“
“Bl" name lloUTi "
llell name I|0UT1II
"83" name ﬂoU’riN
"CARRY-IN" name "
"ZERQ" name "QUT1

"FULL-ADDER111"
"FULL-ADDER111"
“FULL-ADDER111"
"FULL-ADDER111"
"FULL-ADDER111"
"FULL-ADDER121"
“FULL-ADDER121"
"FULL-ADDER121"
“FULL~ADDER121"
"FULL-ADDER121"
"FULL-ADDER131"
"FULL-ADDER131"
"FULL-ADDER131"
"FULL-ADDER131"
"FULL-ADDER131"
"FULL-ADDER141"
“FULL-ADDER141"
"FULL-ADDER141"
"FULL-ADDER141"
"FULL-ADDER141"
"FULL-ADDER211"
"FULL-ADDER211"
“FULL-ADDER211"
"FULL-ADDER211"
"FULL-ADDER211"
"FULL-ADDER221"
"FULL-ADDER221"
"FULL~ADDER221"
“FULL-ADDER221"
"FULL~-ADDER221"
"FULL-ADDER231"
“FULL-ADDER231"
"FULL-ADDER231"
“FULL-ADDER231"
"FULL-ADDER231"

component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component

C-24

"HA111"
“HA111"
"HAi12"
“HA112"
"OR111"
"HA121"
“HA121"
“"HA122"
“HA122"
“OR121"
“HA131"
"HA131"
“"HA132"
"HA132"
"OR131"
"HA141"
"H‘141 n
llm142"
“HA142"
"OR141"
"HA211"
"HA211"
"HA212"
"HA212"
"OR211"
"HA221"
"HA221"
“HA222"
"HA222"
"0R221"
"HA231"
"HA231"
"HA232"
"HA232"
"OR231"

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
nhame
name
name
nhame
name
name
name
name

OUT1"
n

llSll
"c"
"S"
llc"
'|0UT1 "
IISII
Ilc"
llsll
llc”
”OUTI "
llsll
OIC"
lls“
llcll
“0UT1 [1]
lls“
IIC"
l|sll
llcll
“0UT1 "
llsll
‘Icll
lls"
IICII

n oml [1]
"s"
llC"

Ilsll

NCM
ICOUTI n
IIS"

"cll
llsll
"c"
llo‘ll"ri "

50>
51>
52>
B3>
54>
55>
Enter the
4
More than
Enter the
62
More than
Enter the
47
More than
Enter the
42
More than
Enter the
37
More than
Enter the
3
More than
Enter the
34
More than
Enter the
2

subsystem "FULL-ADDER241" component "HA241" name "S"
subsystem "FULL-ADDER241" component "HA241" name "C"
subsystem "FULL-ADDER241" component "HA242" name "'S"
subsystem "FULL-ADDER241" component "HA242" name "C"
subsystem "FULL-ADDER241" component "OR241i" name "OUT1"
Specific source not required; use arbitrary one

number corresponding to the source you want to

one export can provide the data for IN1
which is used by object S8

in subsystem BCD-ADDER

number corresponding to the source you want to

one export can provide the data for IN1
which is used by object S4

in subsystem BCD-ADDER

number corresponding to the source you want to

one export can provide the data for IN1
which is used by object S2

in subsystem BCD-ADDER

number corresponding to the source you want to

one export can provide the data for IN1
which is used by object Si

in subsystem BCD-ADDER

number corresponding to the source you want to

one export can provide the data for IN2
which is used by object OR2

in subsystem BCD-ADDER

number corresponding to the source you want to

one export can provide the data for IN1
which is used by object OR2

in subsystem BCD~ADDER

number corresponding to the source you want to

one export can provide the data for IN2
which is used by object OR1

in subsystem BCD-ADDER

number corresponding to the source you want to

C-25

use

use

use

use

use

use

use

use

More than

Enter the
1

More than

Enter the
22

More than

Enter the
32

More than

Enter the
27

More than

Enter the
32

More than

Enter the
18

More than

Enter the
16

More than

Enter the
13

More than

one export can provide the data for IN1
which is used by object OR1
in subsystem BCD-ADDER
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND2
in subsystem BCD-ADDER
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object AND2
in subsystem BCD-ADDER
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND1
in subsystem BCD-ADDER
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object ANDi
in subsystem BCD-ADDER
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR111
in subsystem FULL-ADDER111
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object DR111
in subsystem FULL-ADDER111
number corresponding to the source you want to use

one export can provide the data for IN2
vhich is used by object HA112
in subsystem FULL-ADDER111
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA112
in subsystem FULL-ADDER111

C-26

Enter the
16

More than

Enter the
9

More than

Enter the
3

More than

Enter the

23

Moxe than

Enter the

21

More than

Enter the

19

More than

Enter the

20

More than

Enter the
10

More than

Enter the
6

number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA111
in subsystem FULL-ADDER111
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA11iil
in subsystem FULL-ADDER111
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR121
in subsystem FULL-ADDER121
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR121
in subsystem FULL-ADDER121
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA122
in subsystem FULL-ADDER121
number corresponding to the source you want to use

one export can provide the data for IN1
wvhich is used by object HA122
in subsystem FULL-ADDER121
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA121
in subaystem FULL-ADDER121
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA121
in subsystem FULL-ADDER121
number corresponding to the source you want to use

C-27

More than

Enter the
28

More than
Enter the
26

More than
Enter the
24

More than
Enter the
25

More than
Enter the
11

More than
Enter the
7

More than
Enter the
33

More than
Enter the
31

More than

one export can provide the data for IN2
which is used by object OR131
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export can provide the data for IKi
which is used by object OR131
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA132
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA132
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export cam provide the data for IN2
which is used by object HA131
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object HA131
in subsystem FULL-ADDER131
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR141
in subsystem FULL-ADDER141
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object OR141
in subsystem FULL-ADDER141
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA142
in subsystem FULL-ADDER141

C-28

Enter the
29
More than
Enter the
30
More than
Enter the
12
More than
Enter the
8
More than
Enter the
38
More than
Enter the
36
More than
Enter the
14
More than
Enter the
35
More than
Enter the
14

number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA142
in subsystem FULL~ADDER141
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA141
in subsystem FULL-ADDER141
number correspouding to the source you want to use

one export can provide the data for IN1
which is used by object HA141
in subsystem FULL-ADDER141
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR211
in subsystem FULL-ADDER211
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR211
in subsystem FULL-ADDER211
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA212
in subsystem FULL~-ADDER211
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA212
in subsystem FULL-ADDER211
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA211
in subsystem FULL-ADDER211
number corresponding to the source you want to use

C-29

More than

Enter the
17

More than

Enter the
43
More than
Enter the
41
More than
Enter the
39
More than
Enter the
40
More than
Enter the
4
More than
Enter the
22
More than
Enter the
48
More than

one export can provide the data for IN1
which is used by object HA211
in subsystem FULL-ADDER211
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object DR221
in subsystem FULL-ADDER221
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR221
in subsystem FULL-ADDER221
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA222
in subsystem FULL-ADDER221
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA222
in subsystem FULL~ADDER221
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA221
in subsystem FULL-ADDER221
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA221
in subsystem FULL-ADDER221
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR23%
in subsystem FULL-ADDER231
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR23%
in subsystem FULL-ADDER231

C-30

Enter the
46
More than
Enter the
44
More than
Enter the
45
More than
Enter the
4
More than
Enter the
27
More than
Enter the
53
More than
Enter the
51
More than
Enter the
49
More than
Enter the
60

number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA232
in subsystem FULL-ADDER231
number corresponding to the source you want to use

one export can provide the data for INi
which is used by object HA232
in subsystem FULL-ADDER231
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA231
in subsystem FULL-ADDER231
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA231
in subsystem FULL-ADDER231
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object OR241
in subsystem FULL-ADDER241
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object OR241
in subsystem FULL-ADDER241
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA242
in subsystem FULL-ADDER241
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA242
in subsystem FULL-ADDER241
number corresponding to the source you want to use

C-31

More than one export can provide the data for IN2
which is used by object HA241
in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
14

More than one export can provide the data for IN1
which is used by object HA241
in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
32
Rule successfully applied.
application definition TEST-BCD-ADDER
AO A1 A2 A3 BO B1 B2 B3 CARRY-IN ZERO HA111 HA112 HA121

HA122 HA131 HA132 HA14i HA142 HA211 HA212 HA221 HA222 HA231
HA232 HA241 HA242 OR111 OR121 OR131 OR141 OR211 OR221 OR231

OR241 OR1 OR2 AND1 AND2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111%
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR~BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241
.> (rs)
=~ Rules for: application definition TEST-BCD-ADDER
AO A1 A2 A3 BO Bl B2 B3 CARRY-IN ZERO HA1i1 HA112 HA121

HA122 HA131 HA132 HA141 HA142 HA211 HA212 BEA221 HA222 HA231
HA232 HA241 HA242 O0R&111 OR121 OR131 OR141 OR211 OR221 OR231

OR241 OR1 OR2 AND1 AND2 S1 S2 S4 S8 CARRY-QUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR~BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL~ADDER241 -
1) DO-EXECUTE
2) CHECK-SEMANTICS

> (ar 1)
LED S1 = OFF
LED S2 = OFF
LED S4 = OFF
LED S8 = ON

LED CARRY-OUT = ON
Rule successfully applied.
application definition TEST-BCD-ADDER
AO A1 A2 A3 BO Bi B2 B3 CARRY-IN ZERO HA111 HA112 HA121

HA122 HA131 HA132 HA141 HA142 HA211 HA212 HA221 HA222 HA231
HA232 HA241 HA242 OR111 OR121 OR131 OR141 OR211 QOR221 OR231

OR241 OR1 OR2 AND1 ARD2 S1 S2 S4 S8 CARRY-OUT

BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL~ADDER241

C-32

C.4 2z 2 Binary Array Multiplier

{ This test case presents a circuit for multiplying two 2-digit binary numbers. It is

based on the following formula (27:365):

bl b0
al a0
aObl a0bo
albi aibo

C.4.1 Circuit Diagram See Figure C.5 (27:365).

C.4.2 Application Specification
application definition test-2x2-binary-array-multiplier

switch a0 position: on
switch a1 position: on
switch b0 position: on
switch bl position: on

and~gate andil
and~gate and2
and-gate and3
and-gate and4

half-adder HA1
halft-adder HA2

led cO
led ci
led c2
led c3

application binary-array-test is
controls: binary-array
update procedure:
update binary-array

subsystem binary-array is
controls: a0, ai, b0, bi,

C-33

ANSj

AN AND

—

HA1 HA2

dd d

AND1

>

Figure C.5. 2 x 2 Binary Array Multiplier

C-34

andl, and2, and3, and4,
HA1, HA2,
c0, c1, c2, c3
update procedure:

update a0

update al

update b0

update b1l

update andi

update cO

update and2

update and3

update HA1

update ci

update and4

update HA2

update c2

update c3

C.4.83 System/User Dialogue

.> (#> application definition test-2x2-binary-array-multiplier)
application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER
AO A1 BO Bi AND1 AND2 ARD3 AND4 HA1 HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY
> (rs)
- Rules for: application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER
A0 A1 BO Bl AND1 AND2 AND3 AND4 HA1 HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY -
2) CHECK-SEMANTICS
.> (ar 2)

More than one export can provide the data for INi
which is used by object C3
in subsystem BINARY-ARRAY
Choose the export item (subsystem and component)
that you wish to be the source of this data:

1> subsystem "BINARY-ARRAY" component "AO" name "OUT1"
2> gsubsysiem "BINARY-ARRAY" component "A1" name "QUT1"
3> subsystem "BINARY-ARRAY" component "BO" name "OUT1"
4> subsystem "BINARY-ARRAY" component "B1" name "OUT1"
b> subsystem "BINARY-ARRAY" component "AND1" name "OUT1"
6> subsystem "BINARY-ARRAY" component "AND2" name "OUT1"
7> subsystem "BINARY-ARRAY" component "AND3" name "OUT1"
8> subsystem "BINARY-ARRAY" component "AND4" name "OUT1"
9> subsystem "BINARY-ARRAY" component "HA1" name "S"
10> subsystem "BINARY-ARRAY" component "HA1" name "C"
11> subsystem "BIRARY-~ARRAY" component "HA2" name "S"
12> subsystem "BINARY-ARRAY" component "HA2" name "C"
13> Specific source not required; use arbitrary one

Enter the number corresponding to the source you want to use

C-35

12

More than
Enter the
11

More than
Enter the
9

More than
Enter the
b

More than
Enter the
8

More than
Enter the
10

More than
Enter the
6

More than
Enter the
7

More than
Enter the
4

More than

one export can provide the data for IN1
which is used by object C2
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object C1
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object CO
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA2
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HA2
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object HA1
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object HAl
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object AND4
in subsystem BINARY-ARRAY
number corresponding to the source you want to use

one export can provide the data for INi

which is used by object AND4
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN2
which is used by object AND3
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for IN1
which is used by object AND3
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN2
which is used by object AND2
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IN1
which is used by object AND2
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for IN2
which is used by object ARD1
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for INi
which is used by object AND1
in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
1
Rule successfully applied.
application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER
AO A1 BO B1 AND1 AND2 AND3 AND4 HA1 HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY
.> (rs)
- Rules for: application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER
AO A1 BO Bi AND1 AND2 AND3 AND4 HA1 HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY -
1) DO-EXECUTE
2) CHECK-SEMANTICS
.> (ar 1)

C-37

LED CO = ON
LED C1 = OFF
LED C2 = OFF
LED C3 = ON

Rule successfully applied.
application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER
AO A1 BO B1 AND1 AND2 AND3 AND4 HA1 HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY

C-38

C.5 Universal Shift Register

This test case builds a universal 4-bit shift register which, depending on the value of
the select lines, can load 4 bits into the register, shift the contents of the register to the
left, shift the contents to the right or do nothing. Often these registers are constructed
using D flipflops. However, since the validating domain contains no D flipflops, JK flipflops

were substituted. Table C.2 summarizes the expected action for various select line values.

Table C.2. Universal Shift Register Controls
| 51| s Function]

0f{o0 shift contents right

110 shift contents left

0 | 1 | load input into register

111 do nothing

C.5.1 Circuit Diagram See Figure C.6 (8:287).

DO(3) DO(2) ‘ DO(1) ’ DO(0)
JK3 K2 K1 Ko
K A [3 J A K J 1

NN N 7

DI oz BI(i DI(0

Figure C.6. Universal Shift Register

C.5.2 Application Specification

C-39

application definition tsst-universal-shift-register

switch di0 position:
switch dil position:
switch di2 position:
switch di3 position:

switch s0 position:
switch s1 position:

switch left-in position:
switch right-in position:
switch clock position:

led doO
led dot
led do2
led do3

mux mux0
mux muxi
mux mux2
mux mux3

not-gate not-jo
not-gate nct-ji
not-gate not-j2
not-gate not-j3

off
on
oft
on

on
off

off
oft
on

jk~tlip-flop jkO state off
jk~flip-flop jk1 state off
jk~f1ip-flop jk2 state off
jk~flip-flop jk3 state off

application universal~shift-register is
controls: universal-shift-reg

update procedure:

update universal-shift-reg
update universal-shift-reg

subsystem universal-shift-reg is
controls: di0, dil, di2, di3, sC, s1, left-in, right-in, clock,
do0, dol, do2, do3,
mux0, muxi, mux2, mux3,
jko, jki, jk2, jk3,
not-joO, not-ji, not-j2, not-j3

update procedure:
update dil0
update ditl
update di2
update di3

C-40

update right-in

update left-in

update clock

update s0

update sl

if sl.outl and not s0.outl then
update mux3
update not-j3
update jk3
update mux2
update not-j2
update jk2
update muxi
update not-ji
update jki
update mux0
update not-jo
update jkO
update do3
update do2
update dol
update doO

else
update mux0
update not-jo
update jkO
update muxil
update not-ji
update jki
update mux2
update not-j2
update jk2
update mux3
update not-j3
update jk3
update do3
update do2
update doil
update do0

end if

setstate s0 (position, off)

setstate s1 (position, off)

C.5.3 System/User Dialogue

.> (#> application definition test-universal-shift-register)
application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DI1 DI2 DI3 S0 S1 LEFT-IN RIGHT-IN CLOCK DOO DO1 DO2
DO3 MUXO MUX1 MUX2 MUX3 NOT-JO NOT-J1 NOT-J2 NOT-J3 JKO JK1
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG
> (rs)

C-41

- Rules for: application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DI1 DI2 DI3 SO S1 LEFT-IN RIGHT-IN CLOCK D0OO DOi D02
D03 MUXO MUX1 MUX2 MUX3 XOT-JO NOT-J1 NOT-J2 ROT-J3 JKO JKi
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG -
2) CHECK-SEMANTICS
.> (ar 2)
There is more than one possibility for data with name OUTi1
Choose the data you would like to use for evaluating the conditional
1> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-J3: name = OUT1
2> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-J2: name = OUT1
3> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-J1: name = OUT1
4> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-JO: name = OUT1
5> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = MUX3: name = QOUT1
6> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = MUX2: name = OUT1
7> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = MUX1: name = OUTi1
8> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = MUXO: name = OUT1
9> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = CLOCK: name = OUT1
10> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = RIGHT-IN: name = OUT1
11> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = LEFT-IN: name = QUT1
12> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = Si: name = OUT1
13> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = SO: mame = OUT1
14> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = DI3: name = OUT1
16> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = DI2: name = OUTi
16> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = DI1: name = OUT1
17> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = DIO: name = DUT1
12

More than one export can provide the data for IN1
which is used by object NOT-J3
in subsystem UNIVERSAL-SHIFT-REG
Choose the export item (subsystem and component)
that you wish to be the source of this data:
1> subsystem "UNIVERSAL-SHIFT-REG" component "DIO" name "OUT1"
2> subsystem "UNIVERSAL-SHIFT-REG" component "DI1" name "OUT1"

C-42

3>
4>
5>
6>
7>
8>
9>
10>
11>
12>
13>
14>
15>
i6>
17>
18>
19>
20>
21>
22>
23>
24>
25>
26>
Enter the
13

subsystem "UNIVERSAL-SHIFT-REG" component *"DI2" name "OUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "DI3" name "OUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "S0" name "OUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "S1" name "OUT1"

subsystem "UNIVERSAL-SHIFT-REG" component "LEFT-IN" name

IIOUTI 1]

subsystem "UNIVERSAL-SHIFT-REG" component "RIGHT-IN" name "QUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "CLOCK" name "OQUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "MUX0" name "QUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "MUX1" name "OUT1"
subsystem "UNIVERSAL-SHIFT-REG" component "MUX2" name "OUT1"
subsystem "UNIVERSAL-SHIFT-REG" component “MUX3" name "QUT1"

subsystem "UNIVERSAL-SHIFT-REG" component "JKO" name "Q"
subsystem "UNIVERSAL-SHIFT-REG" component "JKO” name "Q-
subsystem "UNIVERSAL-SHIFT-REG" component "JK1" name "Q"
subsystem "UNIVERSAL-SHIFT-REG" component "JK1" name "Q-
subsystem "UNIVERSAL-SHIFT-REG" component "JK2" name "Q"

BAR"

BAR"

subsystem "UNIVERSAL-SHIFT-REG" component "JK2" name "Q-BAR"

subsystem "UNIVERSAL-SHIFT-REG" component "JK3" name "Q"
subsystem "UNIVERSAL-SHIFT-REG" component "JK3" name "Q-

subsystem "UNIVERSAL-SHIFT-REG" component "NOT-JO" name
subsystem "UNIVERSAL-SHIFT-REG" component "“NOT-Ji" name
subsystem "UNIVERSAL-SHIFT-REG" component "NOT-J2" name
subsystem "UNIVERSAL-SHIFT-REG" component "NOT-J3" name
Specific source not required; use arbitrary ome

number corresponding to the source you want to use

More than one export can provide the data for INi

Enter the
12

More than

Enter the
11

More than

Enter the
10

More than

Enter the
9

which is used by object NOT-J2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object NOT-J1
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object NOT-JO
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for CLK
which is used by object JK3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

C-43

BAR"

H 0UT1"
NOUTI "
I|0UT1 "
"OUTI "

More than

Enter the
25

More than

Enter the
13

More than
Enter the
9

More than
Enter the
24

More than
Enter the
12

More than
Enter the
9

More than
Enter the
23

More than
Enter the
11

More than

one export can provide the data for K
which is used by object JK3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for J
which is used by object JK3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export cam provide the data for CLK
which is used by object JK2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for K
which is used by object JK2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for J
which is used by object JK2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for CLK
which is used by object JK1
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for K
which is used by object JKi
in subsystem UNIVERSAL-SHIFT-REG

number corresponding to the source you want to use
one export cam provide the data for J
which is used by object JK1

in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for CLK
which is used by object JKO

C-44

Enter the
9

More than

Enter the
22

More than
Enter the
10

More than
Enter the
6

More than
Enter the
5

More than
Enter the
20

More than
Enter the
18

More than
Enter the
4

Moxe than
Enter the
7

in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for K
which is used by object JKO
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for J
which is used by object JKO
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for S1
which is used by object MUX3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export cam provide the data for SO
which is used by object MUX3
in subsystem UNIVERSAL-SHIFT-REG
aumber corresponding to the source you want to use

one export can provide the data for IN3
which is used by object MUX3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object MUX3
in subsystem UNIVERSAL~SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object MUX3
in subsystem UNIVERSAL~SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for INO
which is used by object MUX3
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

More than

Enter the
6

More than
Enter the
13

More than
Enter the
18

More than
Enter the
16

More than
Enter the
3

More than
Enter the
20

More than
Enter the
6

More than
Enter the
5

More than

one export can provide the data for Si
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export cam provide the data for SO
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN3
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN2
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN1
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export cam provide the data for INO
which is used by object MUX2
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for Si
which is used by object MUX1
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for SO
which is used by object MUX1
in subsystem UNIVERSAL-SHIFT-REG
number corresponding to the source you want to use

one export can provide the data for IN3
which is used by object MUX1

C-46

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for IN2
which is used by object MUX1
in subsystem UNIVERSAL-SHIFT-REG
CEnter the number corresponding to the source you want to use
14

More than one export can provide the data for IN1
which is used by object MUX1
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for INO
which is used by object MUX1
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for Si1
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for SO
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN3
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-R.”
Enter the number corresponding to the source you want to use
14

More than one export can provide the data for IN2
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
8

More than one export can provide the data for IN1
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
1

C-47

More than one export can provide the data for IKO
which is used by object MUXO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for INi
whick is used by object D03
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
20

More than one export can provide the data for IN1
which is used by object D02
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
i8

More than one export can provide the data for IN1
which is used by object DO1
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than omne export can provide the data for INi
which is used by object DOO
in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
14
Rule successfully applied.
application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DIi DI2 DI3 SO S1 LEFT-IN RIGHT-IN CLOCK DCOO DO1 DO2
D03 MUXO MUX1 MUX2 MUX3 NOT-JO NOT-J1 NOT-J2 NOT-J3 JKO JK1
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG
.> (rs)
- Rules for: application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DI1 DI2 DI3 SO Si1 LEFT-IN RIGHT-IN CLOCK DOO DO1 DO2
DO3 MUXO MUX1 MUX2 MUX3 NOT-JO NOT-J1 NOT-J2 NOT-J3 JKO JK1
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG -
1) DO-EXECUTE
2) CHECK-SEMANTICS

.> (ar 1)

LED DO3 = O
LED D02 = OFF
LED DO1 = ON

LED DOO = OFF
LED D03 = OFF

LED DO2 = ON
LED DO1 = OFF
LED DOO = ON

C-48

Rule successfully applied.
application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DI1i DI2 DI3 SO S1 LEFT-IN RIGHT-IN CLOCK DOO DO1 DO2
D03 MUXO MUX1 MUX2 MUX3 NOT-JO NOT-J1 EOT-J2 NOT-J3 JKO JK1
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT~REG

C-49

Appendix D. Code

This appendix contains the REFINE source code for the Preprocessing, Semantic
Check and Execute portions of Architect, the application composer described in Section 4.1.

Each section corresponds to an individual source code file.

D.1 Globals Definitions
1t in-package("RU")
t1 in-grammar(’user)

#l1
File name: globals.re

Description: Contains all the global constants and variables.

|1#

constant Saved-Suffix : string = "-SAVED"
constant Generics-Path : string = "../generics/"
constant Applic-Path : string = "../applics/"
constant Object-Path : string = "../objs/"

constant separator : char = #\.

false

var Fatal-Error : boolean
var Changes-Made : boolean = false

var Semantic-Checks-Performed : boolean = false

D.2 REFIN{E Domain Model
1t in-package("RU")
! in-grammar(’user)

#1
File name: dm-ocu.re

Description:

This version includes only the domain-independent dm

data. Domain-specific domain knowledge is included in the
technology base in the file for the corresponding object
class.

I l#
% OBJECT CLASSES:
var World-Obj : object-class subtype-of user-Object
var Spec-0bj : object~class subtype-of World-Obj
% A high-level object that ties together all of the parts of an
% application definition
var Spec-Part-0bj : object-class subtype-of World-0bj

% Spec-Parts describe all of the senetences used by the application
% specialist to build an application definition

var Incomplete-0Obj : object-class subtype-of Spec-Part-Obj
var Generic-Inst : object-class subtype-of Spec-Part-0bj
var Load-0bj : object-class subtype-of Spec-Part-Obj
var Component-0Obj : object-class subtype—of Spec-Part-0bj

% Component-Obj’s are all the parts of a final definition

var Application~0bj : object-class subtype-of Component-0Obj
var Subsystem-0bj : object-class subtype-of Component-0bj
var Primitive-0bj : object-class subtype-of Component-0Obj
var Statement-0bj : object-class subtype-of World-0bj
var If-Stmt-0bj : object-class subtype-of Statement-0bj
var While-Stmt-0bj : object-class subtype-of Statement-Obj
var Call-Obj : object-class subtype-of Statement-Obj
var Update~Call-Obj : object-class subtype-of Call-Obj
var Create~Call-0Obj : object-class subtype-of Call-Obj
var SetFunction-Call-0Obj : object-class subtype-of Call-Obj
var SetState-Call-Obj : object-class subtype-of Call-Obj
var Destroy-Call-Obj : object-class subtype-of Call-Obj
var Initialize-Call-0Obj : object-class subtype-of call-obj
var Stabilize-Call-0Obj : object-class subtype-of call-obj
var Configure-Call-Obj : object-class subtype-of call-obj
var Import-Export-0Obj : object-class subtype-of World-Obj
var Import-0Obj : object-class subtype-of Import-Export-0bj
var Export-0Obj : object-class subtype-of Import-Export-0bj
var Name-Value-Obj : object-class subtype—of World-Obj
var Source-0bj : object-class subtype-of World-Obj
var Generic-0Obj : object-class subtype-of World-0Obj

D-2

%%% ATTRIBUTES:

% Spec-0bj:
var Spec-Parts : map(Spec-0bj, seq(Spec-Part-0bj))
computed-using
Spec-Parts(x) = []

% Incomplete-0Obj:
var Obj-Type : map(Incomplete-Obj, symbol)

{1}

% Generic-Inst:
var Generic-To-Be-Used : map(Generic-Inst, symbol) = {] |}
var Generic-Parameters : map(Generic-Inst, seq(any-type))
computed-using
Generic—-Parameters(x) = []

% Load-Obj:
var Object-To-Load : map(Load-0bj, symbol) ={l |}

% Application-Obj:
var Application-Components : map(Application-Obj, seq(symbol))
computed-using
Application-Components(x) = []

var Application-update : map(Application-0bj, seq(Statement-Obj))
computed-using
Application-update(x) = []

% Subsystem-0bj:
var Controllees : map(Subsystem-Obj, seq(symbol))
computed-using
controllees(x) = []

wh changed seq to set in import-Area and Export-Area ...
var Import-Area : map(Subsystem-Obj, set(Import-0bj))
computed-using
Import-Area(x) = {}
var Export-Area : map(Subsystem-0bj, set(Export-Obj))
computed-using
Export-Area(x) = {}

var Update : map(Subsystem-Obj, seq(Statement-0bj))
computed~using
Update(x) = []
var Initialize : map(subsystem-obj, seq(name-value-obj))

computed-using
Initialize(x) = (]

% Statements:

% If-Stmt-0bj

var If-Cond : map(If-stmt-0bj, Expression) ={l I}
var Then-Stmts : map(If-stmt-Obj, seq(Statement-Obj))
computed-using
Then-Stmts(x)
var Else-Stmts : map{(If-stmt-0bj, seq(Statement~0bj))
computed-using

i
a

Else-Stmts(x) = []
% While-Stmt-0bj:
var While-cond : map{(While-stmt-Obj, expression) ={l I}
var While-stmts : map(While-stmt-Obj, seq(Statement-0bj))

computed-using
Vhile-stmts(x) = []

% Call-Obj:
var operand : map(Call-Obj, symbol) = {| |}
% Create-Call-Obj:
var object-type : map(create-Call-0bj, symbol) = {}|I}
% SetFunction-Call-0bj:
var function-name : map(SetFunction-Call-0bj, symbol) = {||}
var coefficients : map(SetFunction-Call-0bj, set(name-value-0bj))

computed-using
coefficients(x) = {3

% SetState-Call-Obj:
var state-changes : map(SetState-Call-Obj, set(name-value-0bj))
computed-using
state—changes(x) = {}

% Import-0bj:

var import-name : map(Import-0Obj, symbol) = {1}
var import-category : map(Import-0bj, symbol) = {l1}
var import-type-data : map(Import-0bj, symbol) = {11}
var consumer : map(Import-0Obj, symbol) = {I{}
var Source : map(Import-0bj, set(Source-0bj))

computed-using
Source(x) = {}

% Export-0bj:

var export-name : map(Export-Obj, symbol) = {l[}
var export-category : map(Export-0bj, symbol) = {l[}
var export-type-data : map(Export-0bj, symbol) = {|I}
var value : map(Export-0Obj, any-type) = {lI}
var producer : map(Export-Obj, symbol) = {jl}

D-4

% Name-Value-Obj:
var Name-value-Name
var Name-value-value

% Source-0bj:

var Source-Subsystem
var Source-Object
var Source-Name

% Generic-0bj:
var Obj-Instance
var Placeholder-IDs
computed-using
Placeholder-IDs(x) = [1

var Placeholder-Type
computed-using
Placeholder-Type(x) = []

%

: map(Name-value-Obj, symbol) = {||}

: map(Name-value-0bj, any-type) = {||}
: map(Source-Obj, symbol) = {3}
: map(Source-Obj, symbol) = {l}
: map(Source-Obj, symbol) = {1}

: map(Generic-0Obj, Symbol) = {| I}
: map(Generic-0Obj, seq(any-type))

: map(Generic~Obj, seq(symbol))

% Code for Boolean-expressions

var Expression :

var Literal-Expression :

var Identifier
var Boolean-Literal
var True-Literal

var

False-Literal

var Number-Literal

var Integer-Literal

var Real-Literal
var String-Literal

object-class subtype-of World-0bj

object-class subtype-of expression

: object-class subtype-of Literal-Expression
: object-class subtype-of Literal-Expression
: object-class subtype-of Boolean-Literal

: object-class subtype-of Boolean-Literal

: object-class subtype-of Literal-Expression
: object-class subtype~of Number-Literal

: object-class subtype-of Number-Literal

: object-class subtype-of Literal-Expression

var Unary-Expression : object-class subtype-of Expression

var Not-Exp : object-class subtype-of Unary-Expression
var abs-exp : object-class subtype-of unary-expression
var negate-exp : object-class subtype-of unary-expression
var positive-exp : object-class subtype-of unary-expression
var Binary-Expression : object-class subtype-of Expression
var Or-Exp : object-class subtype-of Binary-Expression
var And-Exp : object-class subtype-of Binary-Expression
var Equal-Exp : object-class subtype-of Binary-Expression
var Not-Equal-Exp : object-class subtype-of Binary-Expression
var LT-Exp : object-class subtype-of Binary-Expression
var LTE-Exp : object-class subtype-of Binary-Expression
var GT-Exp : object-class subtype-of Binary-Expression
var GTE-Exp : object-class subtype-of Binary-Expressaion

D-5

var add-exp : object-class

var subtract-exp : object-class
var multiply-exp : object-class
var divide-exp : object-class
var mod-exp : object-class

var exponential-exp : object-class

W
var
var

vax
var
var
var

var
var
var

Attributes for expressions:

subtype-of Binary-Expression
subtype-of Binary-Expression
subtype-of Binary-Expression
subtype-of Binary-Expression
subtype-of Binary-Expression
subtype-of Binary-Expression

Id-Name : map(Identifier, symbol) = {[[}

Id-Source : map(Identifier, import-export-obj) = {| [}
Int-value : map(Integer-Literal, integer) = {| |}
Real-value : map(Real-Literal, real) = {| |
Boolean-value : map{Boolean-Literal, boolean) = {} |}
String-value : map(String-Literal, string) = {| |}
Argument1 : map(Binary-Expression, Expression) = {| [}
Argument2 : map(Binary-Expression, Expression) = {| |}

Argument : map{(Unary-Expression,

%% Tree Attributes For Expressions

Form

Expression~Attrs

Expression) = {| |}

define-tree-attributes(’Binary-Expression, {’Argumenti, ’Argument2});
define-tree-attributes(’Unary-Expression, {’Argument})

Form

Define-AST

define-tree~attributes(’While-Stmt-0bj, {’While-Cond, ’While-Stmts});

define-tree—attributes(’If-Stmt-0bj, {’If-Cond, ’Then-Stmts, ’Else-Stmts});

define-tree-attributes(’Call-0bj, {’Operand});
define-tree-attributes(’SetFunction-Call-0bj, {’Function-Name,
’Coefficients});
define-tree-attributes(’SetState-Call-Dbj, {’state-changes});
detine-tree-attributes(’Application-Obj, {’Application-Components,
'Application-Update});

define-tree-attributes(’Subsystem-0bj,
{’Controllees, ’Update, ’Initialize, ’Export-Area, ’Import-Areal);

define-tree-attributes(’Spec-0bj, {’Spec-Parts});
define-tree-attributes(’Import-Obj, {’Import-Name, ’Import-Category,
'Import-Type-Data, ’Source, ’Consumer});
define-tree-attributes(’Export-0bj, {’Export-Name, ’Export-Category,
’Export-Type-Data, ’Value, ’Producer});
define-tree-attributes(’Generic-0Obj, {’0Obj-Instance, ’Placeholder-Ids})

form Make-Names-Unique
unique-names-class(’Spec-0bj, true);
unique-names-class(’Application-0Obj, true);
unique-names-class(’Subsystem-Obj, true);
unique-names-class(’Generic-0bj, true);
unique-names-class(’Generic-Inst, true);

L

unique-names-class(’Load-0bj, true);
unique-names-class(’Incomplete-0bj, true)

D.3 OCU Grammar

1! in-package("RU")
!} in-grammar(’syntax)

#||
File name: gram-ocu.re

Description: The OCU grammar ~ all of the domain-independent productions, most of which
describe the OCU model
NOTE: If you change this file, you must also recompile the domain-specific grammar.
If no changes are made to that grammar, erase its .fasl4 file to make sure it
recompiles. Otherwise, you won’t see the changes made to the OCU grammar.
(See the DIALECT User’s guide about grammar inheritance)
Rules:
None

Functions:
None

F#

grammar OCU
no-patterns
start-classes Spec-Obj, Subsystem-obj, Incomplete-obj, Load-Ubj, Generic-Obj

file-classes Spec~(bj, Subsystem-obj, Incomplete-obj, Load-Obj, Generic-Obj

productions
Spec-0bj ::= ["application" "definition" name {Spec-Parts + ""}]
builds Spec-0bj,

Application-0bj ::= ["application” name "is"

"controls:" application-components * ","

“update procedure:"

application-update * ""] builds Application-0bj,

Subsysten-Ubj ::= ["subsystem” name "is"

"controls:" Controllees * ","
{("imports:" Import-Area * ""]}
{["exports:" Export-Area * ""]}
{["initialize procedure:"

D-7

initialize * ""1}
"update procedure:"

update * ""] builds Subsystem-Obj,
Import-0bj ::= [import-name import-category import-type-data

consumer "(" [source * ""] ")"] builds Import-0bj,
Export-0bj ::= [export-name export-category export-type-data

value producer] builds Export-0Obj,
Source-0bj ::= [Source-Name Source-Subsystem Source-Object]

builds Source-0bj,

Generic-Inst ::= ["generic" name "is" "new" Generic-To-Be-Used

Generic-Parameters * " ,"] builds Generic-Inst,
Incomplete-0bj ::= ["object" obj-type "," name] builds Incomplete-obj,
Load-0bj ::= ["load" Object-To-Load] builds Load-0bj,
If-Stmt-0bj ::= ["if" if-cond "then" Then-Stmts + ""

{["else" Else-Stmts + ""]}

"end" "if"] builds If-Stmt-0bj,

While-Stmt-0bj ::= ["while" while-cond "loop"
While-Stmts * "

"end" ‘'"while"] builds While-Stmt-0bj,
Update-Call-Obj ::= [“update" operand] builds Update-Call-0bj,
Create-Call-Obj ::= ["create" operand object-typel] builds Create-Call-O0bj,
SetFunction-Call-Obj ::= ["setfunction" operand function-name

Coefficients * ""] builds SetFunction-Call-Obj,

SetState-Call-0bj

["setstate" operand
State-Changes * "'"] builds SetState-Call-Obj,

Destroy-Call-0bj ["destroy" operand] builds Destroy-Call-Obj,

Initialize-Call-Obj

["initialize" operand] builds Initialize-Call-0Obj,

Configure-Call-0Obj

["configure" operand] builds Configure-Call-Obj,

Stabilize-Call-0Obj

["stabilize" operand] builds Stabilize-Call-Obj,

Name-Value-0Obj

["(" name-value-name ","
name-value-value ")"] builds Name-Value-0bj,

Generic-0Obj ::= ["generic-obj" name Obj-Instance

D-8

"jds:" {Placeholder-IDs + ","}
“types:" {Placeholder-Type + *,"}] builds Gemeric-Obj,

And-Exp ::= [argumentl "and" argument2] builds And-Exp,
Or-Exp ::= [argumentl "or" argument2] builds or-Exp,
Equal-Exp ::= [argumentl "=" argument2] builds Equal-Exp,
Not-Equal-Exp ::= [argumenti "/=" argument2] builds Not-Equal-Exp,
LT-Exp ::= [argumentl “<" argument2] builds LT-Exp,
LTE-Exp t:= [argumenti "<=" argument2] builds LTE-Exp,
GT-Exp ::= [argument1 ">" argument2] builds GT-Exp,
GTE-Exp ::= [argument1 ">=" argument2] builds GTE-Exp,
Add-Exp 1= [argumenti "+" argument2] builds Add-Exp,
Subtract-Exp ::= [argumenti "-" argument2] builds Subtract-Exp,
Multiply-Exp ::= [argumentl "*" argument2] builds Multiply-Exp,
Divide-Exp = [argumenti "/" argument2] builds Divide-Exp,

Mod-Exp

::= [argumenti "mod" argument2] builds Mod-Exp,
Exponential-Exp ::

[argumenti "##" argument2] builds Exponential-Exp,

Abs-Exp = ["abs" argument] builds Abs-Exp,

Hot-Exp = ["not" argument] builds Not-Exp,
Negate-Exp = ["-" argument] builds Negate-Exp,
Positive-Exp ::= ["+" argument] builds Positive-Exp,
Identifier = [Id-Name] builds Identifier,
Integer-Literal ::= [Int-Value] builds Integer-Literal,
Real-Literal = [Real-Value]l] builds Real-Literal,

String-Literal
True-Literal
False-Literal

[String-Value] builds String-Literal,
["“true"] builds True-Literal,
["talse”] builds False-Literal

symbol-start-chars
"abcdefghijklmnopqrstuvexyzABCDEFGHIJKLMROPQRSTUVWXYZ. "

symbol-continue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-0123456789."

precedence

for expression brackets "(" matching ")"
(same-level "and", "or" associativity left),
(same-level "<, <=M, M=t Hyzn nyn o n/=n aggociativity none),
(same-level "+", "-" agsociativity left),
(same-level "s", "/", "mod" associativity left),
(same-level "not" associativity none),
(same-level "abs" associativity none),
(same-level "**" associativity right)

end

D-9

D.4 Imports-Ezports
1) in-package("RU")
't in-grammar(’user)

#|1
File name: imports-exports.re
This file encapsulates the import/export-related processing in one place

I 1#

%

%

%% PREPROCESSING
%

%

%% Build-Import-Export-Area -- Considered part of "preprocessing". Called from

%4 semantic-checks to build import/export areas. It sets up the import area
% and export area of the subsystem (input parameter, subsystem). It

W enumerates over all the controllees of the subsystem. If the controllee
wh is a primitive object, it adds a new import-obj to the import-area for

%% each member of the object’s INPUT-DATA, if there is not already an
%% import-obj there with the same id (uses import-symbols to keep track).
Wh Same kind of thing for the exports...

function build-import-export-area (subsystem : subsystem—-obj) =
(enumerate ctrlee over controllees(subsystem) do

let (obj : component-obj =
find-object(’component-obj, ctrlee))

if primitive-obj(obj) then
% Are there any import items for this primitive object
% in subsystem’s import area?
% If not, added object’s input-data to import area.
let (import-set : set(import-obj) =
{ x | (x:import-obj) import-obj(x) &
parent-expr(x) = subsystem &
consumer(x) = name(obj)})
(it size(import-set) = O then
% No imports yet for this object; add them

let (input-data : set(import-obj) =
get-input-output-variable(obj, "INPUT-DATA"))
enumerate import over input-data do
set-attrs(import, ’consumer, name(obj));
set-attrs(subsystem, ’import-area,

D-10

import-area(subsystem) with copy-term(import))
% use copy-term so it makes a copy of the object,
% not just a pointer to it

% Are there any export items for this primitive object
% in subsystem’s export area?
% If not, add object’s output-data to export area.

let (export-set : set(export-obj) =
{ x | (x:export-obj) export-obj(x) &
parent-expr(x) = subsystem &
producer(x) = name(obj)})
(it size(export-set) = 0 then
% No exports yet for this object; add them
let (output-data : set(export-obj) =
get-input-output-variable(obj, "OUTPUT-DATA"))
enumerate export over output-data do
set-attrs(export, ’producer, name(obj));
set-attrs(subsystem, ’export-area,
export-area(subsystem) with copy-term(export))
% use copy-term so it makes a copy of the object,
% not just a pointer to it
)
);
% Now that we’ve ensured all input-data and output-data for
% all primitive object controllees are in import/export area,
% must remove any extraneous ones (belonged to primitive objects
% which are no longer part of the subsystem)

let (imports-not-used : set{(import-obj) =
{ x | (x:import~obj) import-obj(x) &
parent-expr(x) = subsystem &
consumer(x) “in controllees(subsystem)})
(enumerate import over imports-not-used do
set-attrs(subsystem, ’import-area, import-area(subsystem) less import)

);

let (exports-not-used : set(export-obj) =
{ x | (x:export-obi) export-obj(x) &
parent-expr(x) = subsystem &
producer(x) ~“in controllees(subsystem)})

(enumerate export over exports-not-used do
set-attrs(subsystem, ’export-area, export-area(subsystem, less export)

)

D-11

%% Determine-Sources-for-Conditionals -- Considered part of preprocessing.

A Called by semantic-checks after the subsystem’s import and export areas
%h are built to associate euch identifier (in an if/while condition) with an
W import-obj or export-obj in the subsystem’s import/export areas.

%% Each identifier in a conditional must reference an import-obj or export-obj
% in its subsystem’s import area or export-area (as there is mno "get-state"
%% interface in the OCU model, all identifiers in conditionals must reference
WA import/export areas, the only data available). This process is very like
wh obtaining the source for import-objs...

function determine-sources-for-conditionals (subsystem : subsystem-obj) =

let (identifiers : seq (identifier) =
[il (i:identifier) identifier(i) &
least-ancestor-of-class(i, ’subsystem-obj) = subsystem])

enumerate id over identifiers do
if undefined?(id-source(id)) then % do not yet have any source
let (id-string : string = symbol-to-string(id-name(id)))
if separator in id-string then Y% user has qualified id name
extract-and-set-id-source(id)
else
get-id-source-for-conditional(id)
else
format(t, "“%"%There is already a source specified for id ~s",
id-name(id));
format(t, " in conditional expression~%");
format(t, " in subsystem “s~%",
name(least-ancestor-of-class{id, ’subsystem-obj)));
(if import—-obj(id-source(id)) then

format(t, " The source is the import item “s~%",
import-name(id-source(id)));
format(t, " consumed by “s~%",
consumer (id-source(id)))
else
format(t, " The source is the export item “s~%",
export-name(id-source(id)));
format(t, " produced by “s~Y%",
producer(id-source(id)))
);

if lisp::y-or-n-p("Do you want to select a different source?") then
get-id-source-for-conditional(id)

%

%

%% Determine-Import-Sources -- Considered part of "preprocessing’". Called
Wh by semantic-checks if there are no errors to determine wuich export-obj
%4 will serve as the source of the data to be requested by each import-obj.
%h If no source currently exists, go figure out which one to use

%% (via get-source); else, present the currently specified to the user

%h who may want to (and can) change it.

D-12

WA
function determine-import-sources (subsystem : subsystem-obj) =
enumerate import over import-area(subsystem) do

if empty(source(import)) then % no source currently specified
get-source(import)

else
(if size(source(import)) = 1 then
% a particular source was selected previously

let (source-info : source-obj = arb(source(import)))

format(t, ""% %There is already a source specified for “s ~%",
import-name(import));

format(t, " which is used by object ~s ~%",

consumer (import));
format(t, " in subsystem “s “%",

name (parent-expr(import)));
format(t, " The source is: “s~%", source-name(source-info));
format(t, " produced by object “s°%", source-object(source-info));
format(t, " in subsystem “s~%", source-subsystem(source-info))
else

format(t, "“%An arbitrary source is to be used for “s7Y",
import-name(import));

format(t, " vhich is used by object ~s~%",
consumer (import));

format(t, " in subsystem “~s-)",
name (parent-expr (import)))

);

if (lisp::y-or-n-p("Do you want to select a different source?")) then
get-source(import)
%

%
%
%% PREPROCESSING UTILITIES
o,
h

%

%

%%, Get-Source -- Used by Determine-Import-Sources. First, sets the import’s
W source to the null set (either it is null to start or the user wants to
% wipe out what is already there. Then find all export-objs within the

W same application definition (spec-obj) which can provide the kind of

wh data needed by import. If only one export-obj can be the source, use it.

D-13

W Otherwise, present the possible choices to the user who must specify
W which one he wants to use.

function get-source(import : import-obj) =
set-attrs(import, ’source, {}); % wipe out whatever was there

let (export-seq : seq(export-obj) =
[source-export | (source-export:export-obj)
export-obj(source-export) &
export-category(source-export) = import-category(import) &
up-to-root(source-export) = up-to-root(import) &
subsystem-obj (parent-expr ((source-export)))1)
% added this last one so it won’t find
% the import/export-objs which are in the variables
% (e.g. THING-OBJ-INPUT)
if size(export-seq) < 1 then
%% Error - should not occur at this time;
%% Supposed to catch this error during semantic checks;
%% this is called only if there are no errors...
format(t, "Error: No subsystem provides “s type of data~%",
symbol~to-string(import-category(import)));
undefined

elseif size(export-seq) = 1 then

format (debug-on,
"There is only one possible source for this info; use it~%");
set-import-source(import, {export-seq(1)})

else
%% More than one subsystem provides this data-item.
%% Prompt the user to select the one to be used...
W and store its name for future reference
%% OR if user doesn’t care where data comes from, store
yAA all possible choices...

let (user-choice : integer = prompt-for-source(import, export-seq))

(if user-choice <= size(export-seq) then
%% User has selected a particular source for this data;
%% set source (import) to this selected source only...
set-import-source(import, {export-seq(user-choice)})
else
%% User has indicated he doesn’t care where import data
%% comes from; set source(import) to all the possible sources
set-import-source(import, seq-to-set(export—seq))

%

%% Set-Import-Source -- loops through all export-objs in set-to-set,

D-14

% creating a new source—obj for each element of set-to—set and setting
%4 its attributes (source-subsystem and source-object), based on

44 info in and about each element of set-to-set. Called by Get-Source
function set-import-source(import : import-obj,

set-to-set : set(export-obj)) =

enumerate x over set-to-set do
let (s : source-obj = make-object(’source-obj))
source-subsystem(s) <- name(parent-expr(x));

source-object(s) <- producer(x);

source-name(s) <- export-name(x);

source(import) <- source(import) with s
A
%
%% Prompt-for-Source -- given a sequence of export-objs to choose from,
%% display each possible choice and prompt the user to choose one.
wh The last choice is always "don’t care", i.e., yse arbitrary source.
% Returns number chosen by the user.

function prompt-for-source (import : import-obj,
seq-to-choose-from : seq(export-obj)) : integer =

format(t, "“%More than one export can provide the data for “s~%",
import-name(import));

format(t, " which is used by object ~“s~%",
consumer (import));

format(t, " in subsystem “s~%",
name (parent-expr (import)));

format(t, ""Choose the export item (subsystem and component)~%");

format(t, " that you wish to be the source of this data:“%");

(enumerate index from 1 to size(seq-to-choose-from) do
format(t, " “d> subsystem ~s component ~s name ~s~%",
index,
symbol-to-string(name(parent-expr(seq-to-choose-from(index)))),
symbol-to-string(producer(seq-to-choose~from(index))),
symbol-to-string(export-name(seq-to-choose-from(index))))

);
format(t, " “d> Specific source not required; use arbitrary one~%",
size(seq-to-choose-from)+1);
format(t, "Enter the number corresponding to the source you want to use~%");
read-input()
%4

%% The following functions are used when handling identifiers in "if" and
%% ‘"while" conditions. As they deal with import and/or export areas, these
%% functions have been placed in .his file to localize any import/export
%% changes (and there have been a lot of them!).

D-15

%

%% Extract-and-Set-Id-Source =-- Separates the consumer/producer from the
A% id name and uses this info to find the appropriate import or export
% object for the id’s source. The separator is a comstant which is set

%4 in globals.re
function extract-and-set-id-source (id : identifier) =
let (id-name-string : string = symbol-to-string(id-name(id)))

let (source-object-name : string = "", % consumer/producer name
source-name : string = "", /4 id name
position-of-separator : integer = size(id-name-string)+1)

% Extract the consumer/producer name and id name
(enumerate index from 1 to size(id-name-string) by 1 do
if id-name-string(index) = separator then
position-of-separator <- index
elseif position-of-separator > size(id-name-string) then
source-object-name <-
append(source-object-name, id-name-string(index))
else
source-name <- append(source-name, id-name-string(index))

);
set-attrs(id, ’id-source, undefined); % wipe out what was there

let (subsystem : subsystem-obj =
least-ancestor-of-class(id, ’subsystem-obj))

let (import-set : set(object) =
{import | (import:import-obj) import-obj(import) &
import in import-area(subsystem) &
import-name(import) = string-to-symbol(source-name, "RU") &
consumer (import) = string-to-symbol(source-object-name, "RU")},

export-set : set(object) =
{export | (export:export-obj) export-obj(export) &
export in export-area(subsystem) &
export-name(export) = string-to-symbol(source-name, "RU") &
producer(export) = string-to-symbol(source-object-name, "RU")})

let (possible-choices : seq(object) =
set-to-seq(import~set union export-set))

it empty(possible-choices) then
tormat(t,
"There is no possible data in subsystem for conditional identifier “s ~%",
id-name(id))
elseif

D-16

size(possible-choices) = 1 then Y there is only 1 place to get this info
set-attrs(id, ’id-source, possible-choices(1));
set-attrs(id, ’id-name, string-to-symbol(source-name, "RU"))
else % The qualification was not precise enough
format(t, "More than one import/export item meets the qualificatiom. %");

format(t, " Please contact the software engineer/domain engineer.-%")
%
%% Get-Id~Source-for-Conditional -- First, sets the identifier’s
%% source to undefined (either it is null to start or the user wants to
W% wipe out what is already there). Then find all import/export-objs within
%% the subsystem which could be the source of data for this id (i.e., that
%% have the same name. If only one can be the source, use it. Otherwise,
%% present the possible choices to the user who must specify which one he
W wants to use.

function get-id-source-for-conditional (id : identifier) =
set-attrs(id, ’id-source, undefined); % wipe out what was there

let (subsystem : subsystem—obj =
least-ancestor-of-class(id, ’subsystem-obj))

let (import-set : set(object) =
{import | (import:import-obj) import-obj(import) &
import in import-area(subsystem) &
import-name(import) = id-name(id)},

export-set : set(object) =
{export | (export:export-obj) export-obj(export) &
export in export-area(subsystem) &
export-name(export) = id-name(id)})

let (possible-choices : seq(object) =
set-to-seq(import-set union export-set))

if empty(possible-choices) then
format(t,
"There is no possible data in subsystem for conditional identifier ~s ~%",
id-name(id))
else
if size(possible-choices) = 1 then J there is only 1 place to get this info
format(t, "There is only one possible choice for ~s, so select it~%",
id-name(id));
set-attrs(id, ’id-source, possible-choices(1))
else % ask the user which import/export obj to use for source
let (choice : integer =
prompt-for-conditional-source(id-name(id), possible-choices))
set-attrs(id, ’id-source, possible-choices(choice))

D-17

%

%% Prompt-for-Conditional-Source -- very similar to Prompt-for-Source

%h but the printing format and messages are a little different.

144 Given a sequence of export-objs to choose from, display each possible
% choice and prompt the user to choose one.

%% Called by get-id-source-for-conditional.

function prompt-for-conditional-source

(looking-for : symbol,
seq-to-choose-from : seq(object)) : integer =

format(t, "There is more than one possibility for data with name “s~%", looking-for);
format(t, " Choose the data you would like to use for evaluating the conditional“%");

(enumerate index from 1 to size(seq-to-choose-from) do
if import-obj(seq-to-choose-from(index)) then
format(t, " “d> In import area of subsystem "s: consumer = ~s: name = "s"%4",
index, name(parent-expr(seq-to-choose-from{index))),
consumer (seq-to-choose-from(index)),
import-name(seq-to-choose-from(index)))
else
format(t, " ~d> In export area of subsystem ~s: producer = "s: pame = “s°%",
index, name(parent-expr(seq-to-choose-from(index))),
producer (seq-to-choose-from(index)),
export-name(seq-to-choose-from(index)))
);
read-input()

%% ACCESSING IMPORT/EXPORT AREAS -- Used during behavior simulation (execution)

%% Get-Import -—- returns the value of an external data item.

wh Given an id-name and consumer, function finds the import-obj associated
%4 with that id. If the source attribute is defined (we have already

W used this id before and know where to get the data), can go directly
%4 to right subsystem’s export-area and return the value. If not,

%% (ve haven’t used this id yet), must try to find an export-obj with

%% the same id in another subsystem. If there’s only one subsystem

%A with that id in its export-area, that’s the one to use: return its

%% value and set the import-obj source to that subsystem name. If there
% are more than one, prompt the user to specify which subsystem to use as
%% the source. Set the source to that subsystem/object (so user doesn’t have
% to be prompted again) and return the appropriate value.

%% NOTE: changes when source was made a set: if the set is empty (have not
4% yet tried to access this data), find all possible sources. Prompt the
43 user to select one of the possible sources or "arbitrary source". If

D-18

wh a particular source was selected, source has only that entry. If

% “"arbitrary" was chosen, source contains all the possible choices. In
% either case, select an arbitrary member of the source set.
function get-import (id-name : symbol,

subsystem : subaystem-obj,

consumer—obj : primitive-obj) : any-type =

let (import : import-obj =
arb({import | (import:import-obj) import-obj(import) &
import in import-area(subsystem) &
import-name(import) = id-name
& consumer (import) = name(consumer-obj)}))

if undefined?(import) then
%% Oops! This shouldn’t happen. If it does, dm and code for primitive
%% object must be checked to ensure compatibility WRT input-data...
format(t, "A run-time error has occurred. There is no import-obj for “s~%",

id~-name);
format(t, " which is used by “s in subsystem “s~%", name(consumer-obj),
name(subsystem));
format(t, "“Please contact the software engineer-%");
undefined
else

if “empty(source(import)) then
%% We know which subsystem has this irfo;
% go directly to the right one

let (s : source-obj =
arb(source(import))) Y% if there is only one source specified,
% automatically gets the correct one

let (source-sub : subsystem-obj
tfind-object(’subsystem-obj, source-subsystem(s)))
let (source-export : export-obj =
arb({source-export | (source-export:export-obj)
export-obj(source-export) &
source-export in export-area(source-sub) &
export-name(source-export) = source-name(s) &
producer(source-export) = source-object(s)}))
(iZ undefined?(value(source-export)) then
format(t, "The export item corresponding to “s which is used by~%",
id-name) ;
format(t, " s in subsystem “s has not yet been set."%",
name(consumer-obj), name(subsystem))
):

value(source-export)

else

%% We don’t yet know which subsystem will provide this info.
%% So, there must have been some error in our preprocessing...
format(t, "A run-time error has occurred. There is no source for ~s~¥%",

D-19

id-name);

format(t, " which is used by “s in subsystem “s~%", name(consumer-obj),
name (subsystem));

format(t, "Please contact the software engineer. %");

undefined

%
%
%% Set-Export -- set the value attribute of the export-obj
Wh whose export-name attribute = id-name to val. This makes val
44 available to external subsystems.
function set-export (subsystem : subsystem-obj,
source-obj : primitive-obj,
id-name : symbol,
val : any-type) =

let (export : export-obj =
arb({export | (export:export-obj) export-obj(export) &
export in export-area(subsystem) &
export-name(export) = id-name &
producer(export) = name(source-obj)}))

if undefined?(export) then
%% Oops! This shouldn’t happen. If it does, dm and code for primitive
%% object must be checked to ensure compatibility WRT output-data...
format(t,
"You have tried to export a value which is not in object’s output-data~%")
else
set-attrs(export, ’value, val)

%

%
wh
h
%%
wh
4

Get-Id-Type-For-Conditional -- If id-source for id has not been specified,
return ERROR to caller (to avoid unusual run-time error; should always
have a source by this time); otherwise, return the data type of the data to
be used as source of id. Called by eval-expr during semantic checking
of boolean expressioms.

function get-id-type-for-conditional (id : identifier) : symbol =

if undefined?(id-source(id)) then
format(t, "Id “s has not been associated with an import/export-obj-%",
id-name(id));
'ERROR
elseif import-obj(id-source(id)) then
import-type-data(id-source(id))

else

export-type-data(id-source(id))

D-20

%

%

%% Get-Id-Value-for-Conditional -- Retrieves the current value of id.

%% If id-source is an import-obj, must used get-import to obtain the value
%% (since the value isn’t stored in an import-obj). If id-source is an

%4 export-obj, get the value directly for it. Id-source should already
%% be defined...

function get-id-value-for-conditional (id : identifier) : any-type =

if undefined?(id-source(id)) then Y% something strange is going on
’ERROR
elseit import-obj(id-source(id)) then
get—import(id-name(id), parent-expr(id-source(id)),
find-object(’primitive-obj, consumer(id-source(id))))

else
value(id-source(id))
%
%
%
%% GENERAL UTILITIES
%
%

%% get—input-output-variable -- returns the set of input-data or output-data
w4 associated with that object type. Each domain object class has two

%% variables: objectclass-INPUT-DATA and objectclass—OUTPUT-DATA which

%% define the input-data and output-data associated with domain objects

%% of that type. This function constructs the correct variable name

%% (by concatenating object class (of input parameter, obj), -, and

%% IRPUT-DATA or OUTPUT-DATA (from input parameter, in-or-out)).

%% It then calls the lisp function, symbol-value, using the constructed

%% variable name, and returns that value.

%4 NOTE: Input-data and output~data for each object class MUST follow this
W naming convention.
function get-input-output-variable(obj ! primitive-obj,

in-or-out : string) : set(any-type) =
let(oc : re::binding = instance-of(obj))
let(var-name : symbol =

string-to-symbol(concat (symbol-to-string(name(oc)), "-", in-or-out), "ru"))

symbol-value(var-name)

%

%

%% Get-Source -- Used by Determine-Import-Sources. First, sets the import’s
% source to the null set (either it is null to start or the user wants to
W wipe out what is already there. Then find all export-objs within the

D-21

w4 same application definition (spec-obj) which can provide the kind of

% data needed by import. If only one export-obj cam be the source, use it.
% Otherwise, present the possible choices to the user who must specify

%% which one he wants to use. Called by Determine-Input-Sources.

function get-source(import : import-obj) =
set-attrs(import, ’source, {}); % wipe out whatever was there

let (export-seq : seq(export-obj) =
[source-export | (source-export:export-obj)
export—obj(source-export) &
export-category(source-export) = import-category(import) &
up-to-root(source-export) = up-to-root(import) &
subsystem-obj (parent-expr((source-export)))])
% added this last one so it won’t find
% the import/export-objs which are in the variables
% (e.g. THING-OBJ-INPUT)
if size(export-seq) < 1 then
%% Error - should not occur at this time;
%% Supposed to catch this error during semantic checks;
%% this is called only if there are no errors...
format(t, "Error: No subsystem provides ~s type of data~%",
symbol-to-string(import-category(import)));
undefined

elseif size(export-seq) = 1 then

format (debug-on,
"There is only one possible source for this info; use it"%");
set—import-source(import, {export-seq(1)})

else
%% More than one subsystem provides this data-item.
%% Prompt the user to select the one to be used...
W and store its name for future reference
%% OR if user doesn’t care where data comes from, store
%A all possible choices..,

let (user-choice : integer = prompt-for-source(import, export-seq))

(if user-choice <= size(export-seq) then
%% User has selected a particular source for this data;
%4 set source (import) to this selected source only...
set—import-source(import, {export-seq(user-choice)})
else
%% User has indicated he doesn’t care where import data
%% comes from; set source(import) to all the possible sources
set-import-source(import, seq-to-set(export-seq))

)

D-22

D.5 Semantic-Checks

't in-package("RU")
11 in-grammar(’user)

%% File name: semantic-checks.re

%% The rules that invoke the individual tests on the subsystem assume that the
%% subsystem is the current object (not the spec object). The main rules

%% (Check-before-executing and reset-fatal-error) can be executed from the

%% spec-obj

4

(]
%% Check-Semantics —— applied on the current node, a spec-obj

rule Check-Semantics (x : object)
true —-->
Perform-Semantic-Checks(X)

%

%

%% Perform-Semantic-Checks -- enumerates cver all the kids of the spec-obj, x,
%% calling the appropriate check function for the kind of object encountered
W (application or subsystem).

PAA There are currently no semantic checks for primitive objects.

function Perform-Semantic-Checks (X : object) =
%% X is root of abstract syntax tree, spec-obj

FATAL-ERROR <- false; % Reset it so only new errors will be flagged
Semantic-Checks-Performed <- true, Y% So we know these checks actually were done

let (components : seq(symbol) = [1, % used for checking unused components
application-objs : seq(application-obj) = [1) % used for checking too many/too few
% applications

(enumerate obj over kids(x) do
if application-obj(obj) then
application-objs <~ append(application-objs, obj);
components <- concat(components, [name(obj}],
set-to-seq(seq-to-set(application-components{objl))));
check-application(obj)

elseif subsystem-obj(obj) then

D-23

components <- concat(components,
set-to-seq(seq-to-set(controllees(obj))));
% NOTE: set-to-seq(seq-to-set) is necessary to ensure there is only 1
% occurrence of each controllee. Making controllees a set to start with
% did not assure only unique controllee names
build-import-export-area(obj); % build framework for im/ex area - "preprocessing"
determine-sources-for-conditionals(obj); % more "preprocessing"
check-subsystem{obj)
);

%% Now, all import/export areas in the entire application have been built.
%% Can check that all imports have a corresponding export
(enumerate obj over kids(x) do
if subsystem-obj(obj) then
Check-for-Exports—Corresponding-to-Imports(obj)
)3

%% Do we have one and only one application-obj?
(it size(application-objs) = O then
Report-Error("There is no application executive in your specification", X)
else
if size(application-objs) > 1 then
Report-Error("There are too many application executives in your specification", X)

%% Is a specific primitive object instance used in more than one subsystem?
(let (dup-seq : seq(symbol) = find-all-dups (components))
enumerate y over dup-seq do
if primitive-obj(find-object(’component-obj, y)) thea
Report-Error(concat("Object ", symbol-to~string(y),
" appears in more than one subsystem"), X)

);

%% Are there any unused components in the spec-~obj?
(let (unused-components : set(component-obj) =
{z i (z:component-obj) component-obj(z) & name(z) ~in components &
up-to-root(z) = X})
enumerate y over unused-components do
Report-Warning(concat("Object ", symbol-to-string{name(y)),
" is not used in the proposed application"), X)

)

%% If no errors so far, determine sources for all imports (part of "preprocessing")
if “FATAL-ERROR then
enumerate component over kids(x) do
if subsystem~obj(component) then
determine~import-sources(component)

%
%

.
%% Check-Application -- ensures application constraints are met, including:

D-24

w Check-If-Application-Components~Exist: (ERROR)

%h Self-explanatory.

%% Check~for-Direct-Use-of-Primitives: (ERROR)

wh Ensures no primitive objects are included in the application directly
% (i.e., without an intervening subsystem)

W Check-Application-Update-Procedure —- Ensures that operands are part of the
% application (i.e., included in application-components) and also includes
W the following check:

% Check-For-Legal-Call-Statement: (ERROR)

%% Ensures that only call statements are included in application-update
%Y (no If or While) and that only implemented subsystem interfaces are
%% used (now, that’s only update!).

%% Check-For-Dupes-in-Application-Components: (WARNIKG)

%% Checks that each component appears only once. If not, this may

%% indicate a specification error (especially a typo), although the

%% application can be executed.

WA Check-For-Unused-Components-in-Update: (WARNING)

% Checks for unused components in the update procedure (i.e. components
% listed in application-components but not used as operands in the update
%% procedure). Again, this could indicate a specification error...

function check-application (application : application-obj) =

Check~If-Application-Components-Exist (application);
Check~for-Direct-Use-of-Primitives (application);
Check-Application-Update-Procedure (application);
Check-~For-Dupes-in-Application-Components (application);
Check~For-Unused-Subsystems-in-Update (application)

%

%

%% Check-If-Application-Components-Exist -- Ensures all application-components
% exist that should exist. If some do not exist, are they to be initialized
%% by the application update procedure? If so, that’s OK.

% Generates an ERROR...

function check-if-application-components-exist (application : application-obj) =
enumerate component over application-components(application) do
if “object-exists(component) then % no such subsystem with that name

Report-Error
(concat("Object ", symbol-to-string(component), " does not exist"),

application)
%
%
%% Check-for-Direct-Use-of-Primitives -~ Ensures that no primitive objects are
W used directly by the application (application should deal only with subsystems).

function Check-for-Direct-Use-of-Primitives (application : application-obj) =

enumerate x over application-components(application) do

D-25

if primitive-obj(find-object(’component-obj, x)) then
Report-Error(concat(symbol-to-string(x),
" is a primitive; only subsystems can be used in application”),

application)
%
%
%% Check-Application-Update-Procedure -- Ensures that all statements in
% application update procedure are legal. Includes:

function check-application-update-procedure (application : application-obj) =

if size(application-update(application)) = O then
Report-Error("No statements in application update procedure", application)
else
enumerats stmt over application-update(application) do
if if--stmt-obj(stmt) then
Report-Error("If statements are not allowed in application update procedure”,
application)
elseif while-stmt—obj(stmt) then
Report-Error("While statements are not allowed in application update procedure",
application)
else Y have a call statement
check-if-operand-in—application (application, stmt);
check-for-legal-call-stmt (stmt)

%
%% Check-If-Operand-in-Application -~ Operand of call statement must be included
Wh in application’s application-components.

function check-if-operand-in-application (application : application-obj,
stmt : statement-obj) =

if operand(stmt) ~in application-components(application) then
Report-Error (concat ("Object ", symbol-to-string(operand(stmt)),
" is not part of the application"), application)

%

%% Check-For-Legal-Call-Stmt --

YA Ensures that only subsystem procedural interfaces (update, destroy,

W initialize, configure and stabilize (the last four are not yet implemented,
W though)) are used in application update procedure.

Wi Generates an ERROR...

function check-for-legal~call-stmt (stmt : statement-obj) =

if configure-call-obj(stmt) then

Report-Error ("Configure not yet implemented ", stmt)
elseif stabilize-call-obj(stmt) then

Report-Error ("Stabilize not yet implemented ", stmt)
elseif initialize-call-obj(stmt) then

Report-Error ("Initialize not yet implemented ", stmt)
elseif destroy-call-obj(stmt) then

Report-~Error ("Destroy not yet implemented ", stmt)

D-26

elseif ~“update-call-obj(stmt) then
Report-Error ("Illegal operation in an application update procedure”, stmt)

%

%

%% Check-for-Dupes-in-Application-Components -- Are any subsystems listed more
w than once in application-components? If so, user may have made an error
W (most likely a typo). Generates a Warning...

function check-for~dupes-in-application-components (application : application-obj) =
let (dup-subsystems : seq(symbol) = find-all-dups (application-components(application)))

if size(dup-subsystems) "= 0 then Y% Have dupes within components of single application
enumerate dupe over dup-subsystems do
Report-Warning(concat("Subsystem ", symbol-to-string(dupe),
" appears more than once in the application”), application)

%

%

%% Check-For-Unused-Subsystems-in-Update -- Are any subsystem not used in the
% application update procedure? If any are unused, it could indicate an error
% by the user (either a typo or perhaps he forgot to include an update

YA statement). Generates a Warning...

function Check-For-Unused-Subsystems-in-Update (application : application-obj) =
let (subsystems-unused : set(symbol) = seq-to-set(application-components(application)))

(enumerate stmt over application-update(application) do
subsystems-unused <- find-unused-components(subsystems-unused, application, stmt)
):
it “empty(subsystems-unused) then
enumerate unused over subsystems-unused do
Report-Warning (concat ("Subsystem ", symbol-to-string(unused),
" not used in application update"), application)

%

%

%% Check-Subsystem —-— ensures subsystem OCU constraints are met.

yAA Check-If-Controllees-Exist: (ERROR)

WA Ensures all controllees exist.

wh Check-Subsystem-Update-Procedure -~ includes the following checks

%% Check-If-Statement: (ERROR)

%W Ensures that if-cond is valid. Then checks that all statements
% in then and else clauses are OK

% Check-While-Statement: (ERROR)

% Ensures that if-cond is valid. Then checks that all statements
%% in then and else clauses are OK

%% Check-If-Operand-in-Subsystem: (ERROR)

Wh Ensures the operand of call statement is part of the

W current subsystem (i.e., it appears in "controllees")

D-27

WA
WA
W
W
WA
W
Wh
wh
"
7'. (]
wh
%h
Wh
%h

Check-SetFunction-Stmt: (ERROR)
Ensures function-name is valid for operand; ensures stmt
coefficients are valid for operand.
Check-SetState-Stmt: (ERROR)
Ensures state names are valid for operand and the new value
provided for them is of the appropriate type.
Check-For-Dupes-in-Subsystem: (WARNING)
Checks that each controllee name appears only once. If not, this may
indicate a specification error (especially a typo), although the application
can be executed.
Check-For-Unused-Components-in-Update: (WARNING)
Checks for unused components in the update procedure (i.e. components listed
as controllees but not used as operands in the update procedure). Again,
this could indicate a specification error...

function check-subsystem(subsystem : subsystem-obj) =

%

Check-If-Controllees-Exist(subsystem);
Check-Subsystem-Update-Procedure(subsystem);
Check-For-Dupes—in-Subsystem{subsystenm);
Check-For-Unused-Components-in-Update(subsystem)

%

wh
wh
wh
W

Check-If-Controllees-Exist ——

Ensures all controllees exist that should exist. If some do not exist,
are they to be created by the subsystem? If so, that’s OK.
Generates an ERROR...

function Check-If-Controllees-Exist (subsystem: subsystem-obj) =

%

enumerate ctrlee over Controllees(subsystem) do

if “object-exists(ctrlee) then Y% no such object with the given name

Report-Error(concat("Object ", symbol-to-string(ctrlee),
" does not exist’), subsystem)

%
W
%

Check-Subsystem-Update-Procedure -- Ensures that all statements in

subsystem update procedure are legal. Includes:

function check-subsystem-update-procedure (subsystem : subsystem-obj) =

%

it size(update(subsystem)) = O then

Report-Error("No statements in subsystem update procedure", subsystem)
else

enumerate stmt over update(subsystem) do

check-statement(stmt)

W
%

Check-Statement -- checks a particular statement. It’s a separate function

80 it can be called within if and while statements.

D-28

function check-statement (stmt : statement-obj) =

if if-stmt-obj(stmt) then
check-if-statement (stmt)
elseif while-stmt-obj(stmt) then
check-while-statement (stmt)
else % have a call statement
check-if-operand-in-subsystem(stmt);
if setfunction-call-obj(stmt) then
check-setfunction-stmt (stmt)
elseif setstate-call-obj(stmt) then
check-setstate-stmt(stmt)
elseif “update-call-obj(stmt) then
Report-Error("Operation is not yet implemented”, stmt)

%
%% Check-If-Operand-in-Subsystem -- Operand of call statement must be included
YA in subsystem’s controllees.
function check-if-operand-in-subsystem (stmt : statement-obj) =
let (subsystem : subsystem-obj =
least-ancestor-of-class(stmt, ’subsystem-obj))
if operand(stmt) “in controllees(subsystem) then
Report-Error (concat ("Object ", symbol-to-string(operand(stmt)),
" is not part of the subsystem"), subsystem)
%
%% Check-If-Statement -- Ensure if condition is valid. Then, ensure all
%% statements in then and else clauses are OK.

function check-if-statement (stmt : statement-obj) =

(it get-expression-type(if-cond(stmt)) ~= ’BOOLEAN then
Report-Error("Invalid condition in if statement ", stmt)
);
(enumerate stmtl over then-stmts(stmt) do
check-statement (stmt1)
)i
enumerate stmt2 over else-stmts(stmt) do
check-statement (stmt2)

%
%% Check-While-Statement -- Ensure while condition is valid. Then, ensure all
W statements in while loop are OK.

function check-while-statement (stmt : statement-obj) =
(if get—expression-type(while-cond(stmt)) “= ’*BOOLEAN then

Report-Error("Invalid condition in while statement ", stmt)

);

D-29

enumerate stmtl over while-stmts(stmt) do
check-statement (stmti)

)

%% Check-SetFunction-Stmt -- Ensures that function name specified is valid for
%% the statement’s operand. Then, ensures that the coefficients specified
% (it any) are valid for that operand.

function Check-SetFunction-Stmt (stmt : statement-obj) =

it object-exists(operand(stmt)) then %checks meaningful only if operand exists
check-for-valid-function-name(stmt);
check-for-valid-coefficients(stmt)

function Check-for-Valid-Function-Name (stmt : statement-obj) =
f %% Thanks to Mary Anne Randour for the essence of this code

let (oc : re::binding = instance-of(find-object(’primitive-obj, operand(stmt))))
let (func-name : symbol =
string-to-symbol {(concat(symbol-to-string(name(oc)), "-",
symbol-to-string(function-name(stmt))), "ru"))
let (valid-function : set(object) =
{ x | (x:object) re::vfunction-op(x) & size(re::formals(x)) = 2 &
name(re::ref-to(re::data-type(re::formals(x)(2)))) = name(oc) &
name(x) = func-name})
% to be valid function, must be a function, must have two parameters,
% the type of the second parameter must be an object of the same class
% as the statement’s operand and it must be named func-name (which is
% constructed from operand object class and specified function name)

if empty(valid-function) then
Report-Error("Invalid function name in setfunction stmt", stmt)

function Check-for-Valid-Coefficients (stmt : statement-obj) =

let (obj : primitive-obj = tind-object(’primitive-obj, operand(stmt)))
let (obj-coefficients : set(name-value-obj) =
get-computed-attr-value(obj, ’coefficients))
JNOTE: get-computed-attr-value function is in "execute" file

enumerate coef over coefficients(stmt) do

let (c : name-value-obj =
arb ({c | (c : name-value-obj) name-value-obj(c) &
c in obj-coefficients & name-value-name(c) = name-value-name(coef)}))
% to be valid coefficient, there must be a name-value-obj in the operand’s
% coefficient mapping whose name-value-name = coefficient to be set

if undefined?(c) then
Report-Error(concat("Illegal coefticient ",

D-30

symbol-to-string(name-value-name(coef))), stmt)

%

%% Check-SetState-Stmt -- Ensures that state names are valid for operand and
%% if so, ensures that new value is compatible with the type of data expected
%% for that state attribute.

function Check-SetState-Stmt (stmt : statement-obj) =
if object-exists(operand(stmt)) then Y%checks meaningful only if operand exists

let (obj : primitive-obj = find-object(’primitive-obj, operand(stmt)))
let (oc : re::binding = instance-of(find-object(’primitive-obj, operand(stmt))))

#1|
enumerate attr-to-set over state-changes(stmt) do
let (attribute-name : symbol =
string-to-symbol (concat(symbol-to-string(name(oc)), "-",
symbol-to-string(name-value-name(attr-to-set))), "ru"))
if ~“(ex (attr) (attr in class-attributes(instance-of(obj), true) &
name(attr) = attribute-name)) then
Report-Error("Invalid state name in setstate stmt’, stmt)
1%

enumerate attr-to-set over state-changes(stmt) do
let (attribute-name : symbol =
string-to-symbol (concat(symbol-to-string(name(oc)), "-",
symbol-to-string(name-value-name(attr-to-set))), "ru"))
let (attr : re::binding =
arb({ x | (x:re::binding) re::binding(x) &
x in class-attributes(instance-of(obj), true) &
name(x) = attribute-name}))
if undefined?(attr) then
Report-Error(concat("Invalid state name (",
symbol-to-string(name-value-name(attr-to-set)),
*) in setstate stmt"), stmt)
else

%% Now ensure new value is of the correct type for the attribute specified

let (legal-type : symbol = get-attribute-type(attr),
valid-booleans : set(symbol) = {’t, ’f, ’T, ’F})
format(t, "legal-type = “8)", legal-type);
if legal-type = ’integer and “integerp(name-value-value(attr-to-set)) then
Report-Error(concat("Value provided for ",
symbol-to-string(name-value-name(attr-to-set)),
" is not integer "), attr-to-set)
elseif legal-type = ’real and ~“floatp(name-value-value(attr-to-set)) then
Report-Error(concat("Value provided for ",
symbol-to-string(name-value-name(attr-to-set)),
" is not real "), attr-to-set)
elseif legal-type = ’boolean then

D-31

(it name-~value-value(attr-to-set) “in valid-booleans then
Report-Error(concat("Value provided for ",
symbol-to-string(name-value-name(attr-to-set)),
" is not boolean "), attr-to-set)
else
set-attrs(attr-to-set, ’name-value-value,
convert-to-boolean{(name-value-value(attr-to-set)))
)
elseif legal-type = ’string and “stringp(name-value-value(attr-to-set)) them
Report-Error(concat ("Value provided for ",
symbol-to—string(name-value-name(attr-to-set)),
" is not string "), attr-to-set)
elseif legal-type = ’symbol and ~“symbolp(name-value-value(attr-to-set)) then
Report-Exrror(concat("Value provided for ",
symbol-to-string(name-value-name(attr-to-set)),
" ig not symbol ")}, attr-to-set)

%

%

%% Check-For-Exports-Corresponding-to-Imports -- Ensures that for each import-obj
%% in the subsystem’s import-area, an export-obj exists in some subsystem’s

W export area that corresponds to it (i.e., that can serve as the source of the
%% external data needed). Generates an ERROR...

%% HNote: the import-obj and corresponding export-obj can be part of the same

P4 subsystem. All subsystems wvhose export areas are considered for

%% "correspondence” must be part of the same spec-obj (in case there is more than
% one in the object base)

function Check-For-Exports-Corresponding~to-Imports (subsystem : subsystem-obj) =

enumerate import over import-area(subsystem) do
let (exports : set(export-obj) =
{ export | (export:export-obj)} export-obj(export) &
export-category(export) = import-category(import) &
up-to-root(export) = up-to-root(import)})

if empty(exports) then
Report-Error (concat ("No subsystem produces data of category ”,
symbol-to-string(import-category(import)), " for object ",
symbol-to-string(consumer (import))), subsystem)

%

%

%% Check-For-Dupes-in-Subsystem -~ Are any controllees listed more than once in the
%% same subsystem? If so, user may have made an ervor (most likely a typo).

% Generates a Warning...

D-32

function Check-For-Dupes-in-Subsystem (subsystem : subsystem-obj) =
let (dup-controllees : seq(symbol) = find-all-dups (controllees(subsystem)))

it size(dup-controllees) “= O then Y% Have dupes within controllees of single subsystem
enumerate dupe over dup-controllees do
Report-Warning(concat("Object ", symbol-to-string(dupe),
" appears more than once in subsystem"), subsystem)

%

%

%% Check-For-Unused-Components-in-Update ~- Are any controllees not used in the
% subsystem update procedure? If any are unused, it could indicate an error
w by the user (either a typo or perhaps he forgot to include an update

%% statement). Generates a Warning...

function Check-For-Unused-Components-in-Update (subsystem : subaystem-obj) =
let (unused-components : set(symbol) = seq-to-set(controllees(subsystem)))

(enumerate stmt over update(subsystem) do
unused-components <- find-unused-components(unused-components, subsystem, stmt)
);
if “empty(unused-components) then
enumerate unused over unused-components do
Report-Warning (concat ("Component ", symbol-to-string(unused),
" not used in subsystem update procedure"), subsystem)

%

%

%

%% VUTILITIES -- The following functions perform some useful task for the various
1) semantic checks...

%

%

%

%% Reset-FATAL-ERROR -- FATAL-ERROR is global variable in DM.

%4 IF FATAL-ERROR is true, a semantic check has found an error
% which must be corrected before the subsystem can be executed.
% For test purposes, it is often useful to be able to ignore
WA these errors by resetting FATAL-ERROR

rule Reset-FATAL-ERROR (x: object)
FATAL-ERROR -->
FATAL-ERROR <- false

%
%
%% Report-Error —- used by all semantic checks to display the
%% error to the user’s screen. Message is the text you wish

%4 displayed and Obj is the object which caused the error

D-33

function Report-Error (Message: string, Obj: object) =

format(t, "~%ERROR -- “s ~%", Message);
format(t, "Object: ~“\\pp\\ “%-%", 0bj);
FATAL~ERROR <- true

%

%

%% Report-Warning -- used by some semantic checks to display a
“ warning to the user’s screen. Message is the text you wish

%% displayed and Obj is the object which caused the error

%% Note: A warning indicates something may be wrong with the
% specification - user must review to ensure it is written as
%% intended.

function Report-Warning (Message: string, Obj: object) =
format(t, "~“%Warning -- "8 ~%", Message);

format(t, "Object: ~\\pp\\ ~%~%",0bj)
%

%
function Object-Exists (Obj-Name : symbol) : boolean =
“(empty(Name-0f(Obj~Name)))

%

%

%% find-all-dups -- Given a sequence of any type, returns another sequence
%% which contains all the duplicates found in the original sequence.

% Each duplicate appears Bnly once in the returned sequence —— for example
%4 find-all-dups on [1, 2, 3, 2, 4, 1, 1] returns [1, 2].

%% Thanks to Dave Zimmerman of Kestrel Institute for this code

function find-all-dups (s: seq(any-type)): seq{any-type) =
let (var the-dups: seq(any-type) = [J)
s=[..,x, .., v, ..]

Ex=y
-=> x in the-dups;
the-dups
%
%
function find-unused-components (unused-components : set(symbol),
obj : component-obj,
stmt : statement-obj) : set(symbol) =

let (componenta-not-used : set(symbol) = unused-components)
(if call-obj(stmt) then

components—not-used <- components-not-used less operand(stmt)
elseif if-stmt-obj(stmt) then

D-34

enumerate stmti over then-stmts(stmt) do
components-not-used <- find-unused-components(components-not-used, obj, stmtl);
enumerate stmt2 over else-stmts(stmt) do
components-not-used <- find-unused-components(components-not-used, obj, stmt2)
else
enumerate stmti over while-stmts(stmt) do
components-not-used <- find-unused-~components{components-not-used, obj, stmti)

);
components-not-used
%
%
%% Get-Attribute-Type -- returns (as a symbol) the data type of an attribute
%% based on its type in the domain model.
% Thanks to Mary Anne Randour for this code!!

function get-attribute-type (attr : re::binding) : symbol =

let (type—map : map(symbol, symbol) =

{l ’re::symbol-op -> ’symbol,
’re::Teal-op -> ’real,
‘re::integer-op -> ’integer,
’re::boolean-op -> ’boolean,
‘re::any-type-op -> ’any-type |})

let (its-type : object = re::range-type(re::data-type(attr)))

if re::class(its-type) = ’re::binding-ref then
if defined?(re::bindingname(its-type)) and-then
re::bindingname(its-type) = ’string then

’string
else
’object
else
type-map(re::class(its-type))
%
%
%% Convert-to-Boolean -- transforms a symbol to boolean

function convert-to-boolean (symbol-to-convert : symbol) : boolean =

if symbol-to-convert = ’t or symbol-to-convert = ’'T then
true

elseif symbol-to-convert = ’f or symbol-to-convert = ’F then
false

D-35

D.6 FEzrecute

't in-package("RU")
!! in-grammar(’user)

%% File name: execute.re

%

%% Do-Execute -- Used to simulate execution of the entire application.
b Current node is the spec-obj parsed in by user. Semantic checks
WA must have already been performed with no errors.

rule Do-Execute (X : object)
“fatal-error & semantic-checks-performed --> Find-and-Execute-Application(X)

%

%

%% Find-and-Execute-Application -- Finds the application-obj within the current
%% application (spec-obj) and calls Execute-Application to execute it.

%% HOTE: There is only one application-obj per application -

%% semantic checks insure that.

function Find-and-Execute-Application (x : object) =
semantic-checks-performed <~ false; Y reset flag to force semantic-checks again

let (application : application-obj =
arb({a | (a:application-obj) application-obj{a) & parent-expr(a) = x}))

Execute-Application(application)

%

%

%% Execute-Application -- Simulates execution of an application
wh (given by the input parmeter, application) by enumerating
% over the statements in the application update procedure.

%% As you can see, this is virtually identical to Execute-Subsystem.

%% However, we are currently using only the most simple application

%% executive. In the future, the execution of applications and subsystems
Y44 may be vastly different.

function Execute-Application (application : object) =

enumerate stmt over application-update(application) do
execute-statement(application, stmt)

%

%

%% Execute-Subsystem -~ Simulates execution of a subsystem
%% (given by the input parmeter, subsystem) by enumerating
WA over the statements in the subsystem update procedure.

function Execute-Subsystem (subsystem : object) =

%

enumerate stmt over update(subsystem) do

execute-statement(subsystem, stmt)

%
W
42
P

Execute-Statement -- Given a statement from a subsystem update

procedure, calls the appropriate function to execute the
statement.

function Execute-Statement (component : object,

%

stmt : statement-obj) =

if call-obj(stmt) then Do-Call-Stmt{(component, stmt)

elseif if-stmt-obj(stmt) then Do~If-Stmt(component, stmt)
elseif while-stmt—obj(stmt) then Do-While-Stmt{component, stmt)
else

format(t, "RUN-TIME ERROR: trying to execute ");
format(t, "an invalid statement: ~\\pp\\~%", component)

%

W
%
W
wh
W

Do-Call-Stmt -- Executes a Call statement. Finds the object

referenced as the operand of the call statement. If that object

is a primitive-obj, call the correct function. If the operand is

another subsystem, recursively call Execute-Subsystem.
Call-stmts include everything but if and while statements...

function Do-Call-Stmt (control: object, stmt : statement-obj) =

let (obj : object = find-object(’component-obj, operand(stmt)))

if defined?(obj) then

if primitive-obj(obj) then

if update-call-obj(stmt) then
% call the current update function name
% which is stored in object’s update-function attribute
lisp::funcall(get-computed-attr-value(obj, ’UPDATE-FUNCTION),
control, obj)

elseif SetFunction-call-obj(stmt) then
SetFunction(operand(stmt), function-name(stmt), coefficients(stmt))

elgeif SetState-call-obj(stmt) then
SetState(operand(stmt), state-changes(stmt))

D-37

%

%

%
%

%

%

else

format(t, "Erroneous call statement for a primitive object ~\\pp\\~“%", stmt)

else % operand is a subsystem
execute-subsystem(obj)

else Y% The object referenced by the operand does not exist
format(t, "RUN-TIME ERROR: trying to execute a statement ");
format{t, "with a non-existent operand ~\\pp\\~%", stmt)

%% Do-If-Stmt —- Executes an If statement. If if-cond evaluates to
%% true, call Execute-Statement for each of the statements in

%h then-stmts. If if-cond is false, call Execute-Statement for
Y44 each statement in else-stmts.

function Do-If-Stmt (control: object, stmt : statement-obj) =

if evaluate-boolean-expression(if-cond(stmt)) then
enumerate then-stmt over then-stmts(stmt) do
execute-statement(control, then-stmt)
else
enumerate else-stmt over else-stmts(stmt) do
execute-statement(control, else-stmt)

{J
% Do-While-Stmt —- As long as the while-cond evaluates to true,

%% call Execute-Statement for each statement in while-stmts.

function Do-While-Stmt (control: object, stmt : statement-obj) =

while evaluate-boolean-expression(while-cond(stmt)) do
enumerate while-stmt over while-stmts(stmt) do
execute-statement(control, while~stmt)

%% SetFunction -- Only valid for primitive objects. Sets the object’s update
wh function name and any coefficients that are also provided. Coefficients
W to be set must already exist.
function SetFunction (operand-name : symbol,

function-name : symbol,

coefficients-to-set : set(name-value-obj)) =

format (debug-on, "Calling SetFunction on primitive object ~s~%", operand-name);

let (obj : primitive-obj = find-object(’primitive-obj, operand-name))
P J J P P

D-38

L

let (oc : re::binding = instance-of(obj))
let (new-function-name : symbol =
string-to-symbol{(concat(symbol-to-string(name(oc)), "-",
symbol-to~string(function-name)), "ru"))
%% The above "let" statements are needed to complete the full function name.
%% The object class must be appended to the function name provided by the user.

set-computed-attr (obj, ’update-function, new-function-name);
%% Now set the coefficients...

let (obj-coefficients : set(name-value-obj) =
get-computed-attr-value(obj, ’coefficients))

enumerate coef over coefficients-to-set do

let (¢ : name-value-obj =
arb ({c | (¢ : name-value-obj) name-value-obj(c) &
c in obj-coefficients & name-value-name(c) = name-value-name(coef)}))

if undefined?(c) then
format(t, "RUN-TIME ERROR: Coefficient ~s does not exist~¥%",
name-value-name(coef))
else
obj-coefficients <- obj-coefficients less c;
obj-coefficients <- obj-coefficients with coef;
set-computed-attr (obj, ’coefficients, obj-coefficients)

%

%

%% SetState -- Only valid for primitive objects. For each item in
%% state-changes-to-make (statement’s state-changes), set the

Wh appropriate attribute of the operand to the given value.
function SetState (operand-name : symbol,

state-changes-to-make : set(name-value-obj)) =
let (obj : primitive-obj = find-object(’primitive-obj, operand-name))
format (debug-on, "~JCalling SetState on primitive object ~\\pp\\"%", obj);
enumerate state-change over state-changes-to-make do

set—-computed-attr (obj, name-value-name(state-change),
name-value-value(state-change))

l/. -

l/' —_—

%
%% Utilities

%

D-39

%

%% The following functions are "utilities” used to retrieve data
%% from an attribute whose name must be constructed and to store
%% data to such an attribute.

%4
%% Get-Computed-Attr-Value -- appends partial-attr~name after
W obj’s object-class name (a symbol, which is obtained by using
W REFINE’s instance-of function) to determine attribute name.
%% Use the REFINE function, retrieve-attribute, to get the curremt
%A value stored in that attribute and return it to the calling function.
function get-computed-attr-value {obj : primitive-obj,
partial-attr-name : symbol) : any-type =
let (oc : re::binding = instance-of(obj))
let (var-name : symbol =
string-to-symbol (concat(symbol-to-string(name(oc)), "-",
symbol-to-string(partial-attr-name)), "ru"))
retrieve-attribute(obj, find-attribute(var-name))
%
%
%% Set-Computed-Attr -- appends partial-attr-name after obj’s
44 object-class name (a symbol, which is obtained by using
% REFINE’s instance-of function) to determine the attribute name
%% (var-name). Use REFINE’s store-attribute function set the
YA A current value of attribute referenced by var-name to new-value.
function set-computed—-attr (obj ! primitive-obj,
partial~attr-name : symbol,
new-value : any-type) =
let(oc : re::binding = instance-of(obj))
let(var-name : symbol =
string-to-symbol (concat(symbol-to-string(name(oc)), "-",
symbol-to-string(partial-attr-name)), “ru"))
store-attribute(obj, find-attribute(var-name), new-value)
%
%4 Get-Coefficient-Value -- Used by primitive object update functions to
% obtain the current value of the coefficient given by coefficient-name.
function get-coefficient-value (obj : primitive-obj,

coefficient-name : symbol) : any-type =

let (obj-coefficients : set(name-value-obj) =
get-computed-attr-value(obj, ’coefficients))

D-40

%

let (c : name-value-obj =
arb ({c | (¢ : name-value-obj) name-value-obj(c) &
¢ in obj-coefficients & name-value-name(c) = coefficient-name}))

name-value-value(c)

D.7 FEval-Ezpr

!! in-package("RU")
!t in-grammar(’user)

%% file: eval-expr.re
Wh NOTE: This code was taken almost verbatim from our final project

wh in CSCE 663. This is another example of code reuse...
%

%% Evaluate-Boolean-Expression -- returns the value of the

% given boolean expression. If it’s a boolean literal, return
% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the
% application specialist); otherwise, evaluate argumentl and

% argument? separately and perform the appropriate operation on
% them.

function Evaluate-Boolean-Expression (X: Object) : Boolean =

format(debug-on, "in evaluate boolean exp, object = ~“\\pp\\ “%", x);

if True-Literal(X) then
true

elseif False-Literal(X) then
false

elseif Identifier(X) then
Get-Id-Value-for-Conditional(X) % function located in imports-exports

elseif Equal~Exp(X) then
let (Exp-Type : symbol = ’INTEGER)
(if Identifier(Argumenti(X)) then
Exp-Type <- Get-Id-Type-for-Conditional(Argumenti(X))
else), must be an object
Exp-Type <- Get-Expression-Type(Argumenti(X))
);
(it Exp-Type = *INTEGER then
Evaluate-Integer-Expression(Argument1(X)) =
Evaluate-Integer-Expression(Argument2(X))
elseif Exp-Type = ’BOOLEAN then

D-41

Evaluate-Boolean-Expression(Argument1(X)) =
Evaluate-Boolean-Expression(Argument2(X))
elseif Exp-Type = ’STRING then
Evaluate-String-Expression(Argumenti(X)) =
Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argument1(X)) =
Evaluate-Real-Expression(Argument2(X))
)
elseif LT-Exp(X) then
let (Exp-Type : symbol = ’INTEGER)
(if Identifier(Argumenti(X)) then
Exp-Type <~ Get-Id-Type-for-Conditional(Argument1(X))
else ’, must be an object
Exp-Type <- Get-Expression-Type(Argumenti(X))

(it Exp-Type = ’INTEGER then
Evaluate-Integer-Expression(Argument1(X)) <
Evaluate-Integer-Expression(Argument2(X))
elseif Exp-Type = ’STRING then
Evaluate-String-Expression(Argument1(X)) <
Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argument1(X)) <
Evaluate-Real~Expression(Argument2(X))
)

elseif LTE-Exp(X) then
let (Exp-Type : symbol = ’INTEGER)
(it Identifier(Argumenti(X)) then
Exp-Type <- Get-Id-Type-for-Conditional (Argument1(X))
else % must be an object
Exp-Type <- Get-Expression-Type(Argumenti(X))
);
(it Exp~Type = ’INTEGER then
Evaluate-Integer-Expression(Argumenti(X)) <=
Evaluate-Integer~Expression(Argument2(X))
eiseif Exp-Type = 'STRING then
Evaluate-String-Expression(Argument1(X)) <
Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argumenti(X)) <=
Evaluate-Real-Expression(Argument2(X))
)
elseif GT-Exp(X) then
let (Exp-Type : symbol = ’INTEGER)
(it Identifier(Argument1(X)) then
Exp-Type <- Get-Id-Type-for-Conditional (Argument1(X))
else % must be an object
Exp-Type <- Get-Expression-Type(Argumenti(X))
);

D-42

(if Exp-Type = ’INTEGER then
Evaluate-Integer-Expression(Argument1(X)) >
Evaluate-Integer-Expression(Argument2(X))
elseif Exp-Type = ’STRING then
Evaluate-String-Expression(Argument1(X)) <
Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argument1(X)) >
Evaluate-Real-Expression(Argument2(X))
)

elseif GTE-Exp(X) then
let (Exp-Type : symbol = ’INTEGER)
(if Identifier(Argumenti(X)) then
Exp-Type <- Get-Id-Type-for-Conditional(Argumenti(X))
else % must be an object
Exp-Type <- Get-Expression-Type(Argument1(X))
);
(if Exp-Type = ’INTEGER then
Evaluate-Integer-Expression(Argumenti(X)) >=
Evaluate-Integer-Expression(Argument2(X))
elseif Exp-Type = ’STRING then
Evaluate-String-Expression(Argument1(X)) <
Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argument1(X)) >=
Evaluate-Real-Expression(Argument2(X))
)

elseif And-Exp(X) then
Evaluate-Boolean-Expression(Argumenti(X)) &
Evaluate-Boolean-Expression(Argument2(X))

elseif Or-Exp(X) then
Evaluate-Boolean-Expression(Argumenti(X)) or
Evaluate-Boolean-Expression(Argument2(X))

elseif Not-Exp(X) then
not (Evaluate-Boolean-Expression(Argument(X)))

%

%

%% Evaluate-Integer-Expression -- returns the value of the

% given integer expression. If it’s a literal, return

% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the
% application specialist); otherwise, evaluate argumentl and

% argument2 separately and perform the appropriate operation on

%

them.

D-43

function Evaluate-Integer-Expression (X : Expression) : integer =
format{(debug-on, "in evaluate integer exp, object = “\\pp\\ %", x);

if Integer-Literal(X) then
Int-Value(X)

elseif Identifier(X) then
Get-Id-Value-for-Conditional(X) % function located in imports-exports

elseif add-exp(X) then
(Evaluate-Integer-Expression(Argument1(X)) +
Evaluate-Integer—-Expression(Argument2(X)))

elseif Subtract-Exp(X) then
Evaluate-Integer-Expression(Argumenti(X)) -
Evaluate-Integer-Expression(Argument2(X))

elseif Multiply-Exp(X) then
Evaluate-Integer-Expression(Argument1(X)) =*
Evaluate-Integer-Expression(Argument2(X))

elseif Divide-Exp(X) then
Evaluate-Integer-Expression(Argument1(X)) div
Evaluate-Integer-Expression(Argument2(X))

elseif Mod-Exp(X) then
Evaluate-Integer-Expression(Argumenti(X)) mod
Evaluate-Integer-Expression(Argument2(X))

elseit Abs-Exp(X) then
let (Exp-Value : integer = 0)
Exp-Value <- Evaluate-Integer-Expression (Argument1(X));
if Exp-Value < O then
0 - Exp-Value
else
Exp-Value

elseif Negate-Exp(X) then
let (Exp-Value : integer = 0)
Exp-Value <- Evaluate-Integer-Expression (Argument(X));
0 - Exp-Value

elseif Positive-Exp(X) then
let (Exp-Value : integer = 0)
Exp-Value <- Evaluate-Integer-Expression (Argument(X));
Exp-Value

% Refine does not handle exponentiation

elseif Exponential-Exp(X) then
let (Power : integer = 1,

D-44

Base : integer = Evaluate-Integer-Expression(Argumenti(X)),
Expon : integer = Evaluate-Integer-Expression(Argument2(X)))

(enumerate index from i to Expon do
Power <- Power * Base);
Power

else
format(debug-on,
"Trying to evaluate a non-integer function as an integer ~%");
format (debug-on, "Object = ~\\pp\\ “%", X);
0

% Evaluate-String-Expression -- returns the value of the

given string expression. If it’s a literal, return

its value; if an identifier, retrieve its value (identifiers
are linked to an import-obj or export-obj as determined by the
application specialist). This implementation currently allows
no operations on strings within expressions.

M I3 e

function Evaluate-String-Expression (X: Object) : String =
format (debug-on, "in evaluate string exp, object = ~\\pp\\ %", x);

| if String-Literal(X) then
String-Value(X)

else % X is an Identifier
Get-Id-Value-for-Conditional(X) % function located in imports-exports

| %
%
%% Evaluate-Real-Expressiou ~-- returns the value of the
% given real expression. If it’s al iteral, return
% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the
% application specialist); otherwise, evaluate argumenti and
% argument2 separately and perform the appropriate operation on
% then.

function Evaluate-Real-Expression (X: Object) : Real =
format(debug-on, "in evaluate real exp, object = ~\\pp\\ ~%", x);

if Real-Literal(X) then
Real-Value(X)

elseif Identifier(X) then
Get-Id-Value-for-Conditional(X) % function located in imports-exports

elseif add-exp(X) then
(Evaluate-Real-Expression(Argumenti(X)) +
Evaluate-Real-Expression(Argument2(X)))

elseif Subtract-Exp(X) then
Evaluate-Real-Expression(Argument1(X)) -
Evaluate-Real-Expression(Argument2(X))

elseif Multiply-Exp(X) then
Evaluate-Real-Expression{Argument1(X)) *
Evaluate-Real-Expression(Argument2(X))

elseif Divide-Exp(X) then
Evaluate-Real-Expression(Argumenti(X)) /
Evaluate-Real-Expression(Argument2(X))

elseif Negate-Exp(X) then
let (Exp-Value : real = 0.0)

Exp-Value <- Evaluate-Real-Expression (Argument(X));

0.0 - Exp-Value

elseif Exponential-Exp(X) then
let (Power : real = 1.0,

Base : real = Evaluate—Real-Expression(Argument1(X)),
Expon : integer = Evaluate-Integer-Expression(Argument2(X)))

(enumerate index from 1 to Expon do
Power <- Power * Base);
Power

elseif Abs-Exp(X) then
let (Exp-Value : real = 0.0)

Exp-Value <- Evaluate-Real-Expression (Argumenti(X));

if Exp-Value < 0.0 then
0.0 - Exp-Value
else
Exp-Value

else

format(debug-on, "Trying to evaluate a non-real function as a real ~%");

format (debug-on, "Object = “\\pp\\ “%", X);
0.0

Utilities

32T T L R 22

function Report-Type-Mismatch-Error(X:object, left,right :

D-46

symbol, Message: string) =

format(t, "Exrror -- Type Mismatch in expression —- “s ~¥%", Message);
format(t, "Object: “\\pp\\ ~%", X);
format(t, "LHS type is “8 ~%", symbol-to-string(left));
if right “= ’nil then
format(t, “RHS type is “s ~%"%", symbol-to-string(right))

%

%

%% Get-Expression-Type -- Returmns the type of an expression (as a symbol).
#h If it finds a mismatch, it reports an error to the calling function.

function Get-Expression-Type (X : object) : symbol =

it Integer-Literal(X) then
*INTEGER
elseif Real-Literal(X) then
’REAL
elseif Boolean-Literal(X) then
?BOOLEAK
elseif String-Literal(X) then
'STRIKG
elseif Identifier(X) then
Get-Id-Type-for-Conditional(X) Y% returns type of data to which
% id refers or ERROR if no id-source
% is specified

% for +, -, *, and /, both left and right sides must be the same type
elseif add-exp(X) or subtract—exp(X) or multiply-exp(X) or divide-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumenti(x)),
rt-type : symbol = Get-Expression-Type(argument2(X)))
if (left-type = rt-type) and (left-type ~= ’ERROR and rt-type ~= ’ERROR) then
lett-type
else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Types must match");
’ERROR % return error

% for mod, both must be integers
elseif mod-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumenti(X)),
rt-type : symbol = Get-Expression-Type(argument2(X)))
if left-type = ’INTEGER and rt-type = ’INTEGER and
(left-type "= 'ERROR and rt-type "= ’ERROR) then
left-type
else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Both sides must be integers");
'ERROR % return error

% for *+, left side can be integer or real, right side must be integer.

D-47

elseif exponential-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumenti(X)),
rt-type : symbol = Get-Expression-Type(argument2(X)))
it (left-type = ’INTEGER or left-type = ’REAL) and rt-type = ’INTEGER
and (left-type “= ’ERROR and rt-type ~= ’ERROR) then
left-type
else
Report-Type-Mismatch~Exrror(X,left-type, rt-type,
"Left side must be integer or real and right side must be an integer");
’ERROR % return error

% for abs, argument cannot be boolean
elseif Abs-Exp(X) then
let (Exp-Type : symbol = Get-Expression-Type(Argument(X)))
if Exp-Type "= ’BOOLEAN and Exp-Type "= ’STRING then
Exp-Type
else
Report-Type-Mismatch-Error(X, Exp-Type, ’nil,
"Type must not be boolean or string");
’ERROR % return error

% for unary minus, argument cannot be boolean
elseif Negate-Exp(X) then
let (Exp-Type : symbol = Get-Expression-Type(Argument(X)))
if Exp-Type “= ’BOOLEAN and Exp-Type "= ’STRING then
Exp-Type
else
Report-Type-Mismatch-Exrror(X, Exp-Type, ’nil,
"Type must not be boolean or string");
’ERROR % return error

% for unary plus, argument cannot be boolean
elseif Positive-Exp(X) then
let (Exp-Type : symbol = Get-Expression-Type(Argument(X)))
if Exp-Type “= ’BOOLEAN and Exp-Type "= ’STRING then
Exp-Type
else
Report-Type-Mismatch-Error(X, Exp-Type, ’nil,
"Type must not be boolean or string");
’ERROR % return error

% all relation operators, both arguments must be the same type
elseit Equal-Exp(X) or Not-Equal-Exp(X) or LT-Exp(X) or LTE-Exp(X) or
GT-Exp(X) or GTE-Exp(X) then
let (left-type : symbol = Get-Expression-Type(argument1(X)),
rt-type : symbol = Get-Expression-Type(argument2(X)))
if left-type = rt-type and (left-type “= 'ERROR and rt-type "= 'ERROR) then
BOOLEAN
else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Types must match");

D-48

’ERROR ¥ return error

% for and, or both arguments must be booleans
elseif And-Exp(X) or Or-Exp(X) then
let (left-type : symbol = Get-Expression-Type(argumenti(X)),
rt-type : symbol = Get-Expression-Type(argument2(X)))
if left-type = ’BOOCLEAN and rt-type = ’BOOLEAN
and (left-type = ’ERROR and rt-type "= ’ERROR) then
?BOOLEAN
else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Both sides must be booleans");
'ERROR % return error

% for mot, argument must be boolean
elseif Not-Exp(X) then
let (Exp-Type : symbol = Get-Expression-Type(Argument(X)))
if Exp-Type = ’BOCLEAN then
Exp-Type
else
Report-Type-Mismatch-Error(X, Exp-Type, ’nil, "Type must be boolean");
’ERROR % return error

else
format (debug-on,
"You shouldn’t be calling this procedure with this object!!"%");
format{(debug-on, "Object = “\\pp\\ “%", x)

D-49

Appendix E. Technology Base for the Logic Circuit Domain

This appendix contains the REFINE code for the logic circuit technology based used
in the logic circuit domain used to validate Architect. Each section defines a single primitive

object within the domain. Please note the conformance to the primitive object template

described in Appendix A.

E.1 And-Gate

'' in-package("RU")
!1 in-grammar(’user)

%% File name: and-gate.re

var AND-GATE-0BJ : object-class subtype-of Primitive-0Obj
var AND-GATE-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’ini,
’import-category, ’signal,
import~type-data, ’boolean),

set-attrs (make-object(’import-obj),
?import-name, ’in2,
’import-category, ’signal,
’import~type-data, ’boolean)}

var AND-GATE-0BJ-QUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outil,
’export-category, ’signal,
*export-type-data, ’boolean)}

var AND-GATE-OBJ-COEFFICIENTS : map(AND-GATE-OBJ, set(name-value-obj))
computed-using

AND-GATE-OBJ-COEFFICIENTS(x) = {}

var AND-GATE-OBJ-UPDATE-FUNCTION : map(AND-GATE-0BJ, symbol)
computed-using
ARD-GATE-OBJ-UPDATE-FUNCTION(x) = ’AND-GATE-OBJ-UPDATE1

% Other Attributes:

var AND-GATE-OBJ-DELAY : map(AND-GATE-DBJ, integer)
computed-using

E-1

AND-GATE-OBJ-DELAY(x) = 0

var AND-GATE-OBJ-MANUFACTURER : map(AND-GATE-0BJ, string)
computed—using
AND-GATE-OBJ-MANUFACTURER(x) = " *

var AND-GATE-OBJ-MIL-SPEC? : map(AND-GATE-0BJ, boolean)
computed-using
AND-GATE-OBJ-MIL-SPEC?(x) = nil

var AND-GATE-OBJ-POWER-LEVEL : map(AND-GATE-OBJ, real)
computed-using
AND-GATE-OBJ-POWER-LEVEL(x) = 0.0

form Make-AND-GATE-Names-Unique
unique-names-class{(’AND-GATE-0OBJ, true)

%
function AND-GATE-OBJ-UPDATE1 (subsystem : subsystem-obj,
and-gate : AND-GATE-0BJ) =

format (debug-on, "AND-GATE-OBJ-UPDATE on ~s~%", name(and-gate));

let (inl : boolean
in2 : boolean

get-import(’ini, subsystem, and-gate),
get-import(’in2, subsystem, and-gate))

set-export(subsystem, and-gate, ’outl, ini & in2)

%

function AND-GATE-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
and-gate : AND-GATE-OBJ) =

format(t, "AND-GATE-OBJ-NEW-UPDATE on “s~%", name(and-gate))

E.2 Or-Gate

! in-package("RU")
1! in-grammar(’user)
%% File name: or-gate.re
var OR-GATE-OBJ : object-class subtype-of Primitive-0Obj
var OR-GATE-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),

’import-name, ’ini,
’import-category, ’signal,

E-2

’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’in2,
’import~category, ’signal,
’import~type-data, ’boolean)}

var OR-GATE-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export~-name, ’outl,
’export-category, ’sigmal,
’export-type-data, ’boolean)}

var OR-GATE-OBJ-COEFFICIENTS : map(OR-GATE-OBJ, set(name-value-obj))
computed-using
OR-GATE-DBJ-COEFFICIENTS(x) = {}

var OR-GATE-OBJ-UPDATE-FUNCTION : map(OR-GATE-0BJ, symbol)
computed-using
OR-GATE-OBJ-UPDATE~FUNCTION(x) = ’OR-GATE-OBJ-UPDATE1

% Other Attributes:

var OR-GATE-OBJ-DELAY : map(OR-GATE-OBJ, integer)
computed-using
OR-GATE-OBJ-DELAY(x) = 0

var OR-GATE-OBJ-MANUFACTURER : map(OR-GATE-OBJ, string)
computed-using
OR-GATE-OBJ-MANUFACTURER(x) = " "

var OR-GATE-OBJ-MIL-SPEC? : map(OR-GATE-OBJ, boolean)
computed-using
OR-GATE-OBJ-MIL-SPEC?(x) = nil

var OR-GATE-OBJ-POWER-LEVEL : map(OR-GATE-0BJ, real)
computed-using
OR-GATE-OBJ-POWER-LEVEL(x) = 0.0

form Make-OR-GATE-Names-Unique
unique~names-class(’0R-GATE-0BJ, true)

%
function OR~GATE-OBJ-UPDATE! (subsystem : subsystem-obj,
or-gate : OR-GATE-OBJ) =

format (debug-on, "OR-GATE-OBJ-UPDATE on ~“s~%", name(or-gate));

let (int : bhoolean = get-import(’ini, subsystem, or-gate),
in2 : boolean = get-import(’in2, subsystem, or-gate))

set—export(subsystem, or-gate, ’outi, (inl or in2))

E-3

%
function OR~GATE-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
or-gate : OR-GATE-OBJ) =

format(t, "OR-GATE-OBJ-NEW-UPDATE on “s”%", name(or-gate))

E.3 Nand-Gate

11 in-package("RU")
{1 in-grammar(’user)

%% File name: nand-gate.re

var NAND-GATE-O0BJ : object-class subtype-of Primitive-0bj

var NAND-GATE-OBJ~INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’ini,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’in2,
’import-category, ’sigmnal,
’import-type-data, ’boolean)}

var NAND-GATE-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outl,
’export-category, ’signal,
’export-type-data, ’boolean)}

var NARD-GATE-OBJ-COEFFICIENTS : map(KAND-GATE-0BJ, set(name-value-obj))
computed-using

NAND-GATE-OBJ-COEFFICIENTS(x) = {}

var NAND-GATE-OBJ-UPDATE~FURCTION : map(NAND-GATE-OBJ, symbol)
computed-using

RAND-GATE-OBJ-UPDATE-FUNCTION(x) = ’NAND-GATE-OBJ-UPDATE1

% Other Attributes:

var NARD-GATE-OBJ-DELAY : map(NAND-GATE-OBJ, integer)
computed-using
NAND-GATE-OBJ-DELAY(x) = 0

w+ar NAND-GATE-OBJ-MANUFACTURER : map(NAND-GATE-0BJ, string)
computed-using

E-4

NAND-GATE-OBJ-MANUFACTURER(x) = " "

var NAND-GATE-OBJ-MIL-SPEC? : map(NAND-GATE-0BJ, boolean)
computed-using
NAND-GATE-O0BJ-MIL-SPEC?(x) = nil

var NAND-GATE-OBJ-POWER-LEVEL : map(NAND-GATE-OBJ, real)
computed-using
NAND-GATE-OBJ-POWER-LEVEL(x) = 0.0

form Make-NAND-GATE-Names-Unique

unique-names-class(’NAND-GATE-0BJ, true)
%

function NAND-GATE-OBJ-UPDATE1 (subsystem : subsystem-obj,
nand-gate : NAND-GATE-0BJ) =

format (debug-on, "NAND-GATE-OBJ-UPDATE on “s~)", name(nand-gate));

let (int : boolean = get-import(’ini, subsystem, nand-gate),
in2 : boolean = get-import(’in2, subsystem, nand-gate))

set-export(subsystem, nand-gate, ’outl, “(inl & in2))

%

function NAND-GATE-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
nand-gate : NAND-GATE-O0BJ) =

format(t, "NAND-GATE-OBJ-NEW-UPDATE on “s~%", name(nand-gate))

E.{ Nor-Gate

1! in-package("RU")
'1 in-grammar(’user)

%% File name: nor-gate.re
var NOR-GATE-0BJ : object-class subtype-of Primitive-0bj

var NOR-GATE~OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’ini,
’import-category, ’signal,
’import-type~data, ‘boolean),

set-attrs (make-object(’import-obj),
’import-name, ’in2,
’import-category, ’signal,
’import-type-data, ’boolean)}

var NOR-GATE-O0BJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outi,
’export-category, ’signal,
’export-type-data, ’boolean)}

var NOR~GATE-OBJ-COEFFICIENTS : map(NOR-GATE-OBJ, set(name-value-obj))
computed-using
NOR-GATE-OBJ-COEFFICIENTS(x) = {3}

var NOR-GATE-OBJ-UPDATE-FUNCTION : map(NOR-GATE-OBJ, symbol)
computed-using
NOR-GATE-OBJ-UPDATE-FUNCTION(x) = ’NOR-GATE-OBJ-UPDATE1

% Other Attributes:
var NOR-GATE-OBJ-DELAY : map(NOR-GATE-OBJ, integer)
computed-using
NOR-GATE-OBJ-DELAY(x) = 0

var NOR-GATE-OBJ-MANUFACTURER : map(NOR-GATE-OBJ, string)
computed-using
NOR-GATE-OBJ-MANUFACTURER(x) = * *

var NOR-GATE-OBJ-MIL-SPEC? : map(NOR-GATE-0BJ, boolean)
computed-using
NOR-GATE-OBJ-MIL-SPEC?(x) = nil

var NOR-GATE-OBJ-POWER-LEVEL : map(NOR-GATE-OBJ, real)
computed-using
EOR-GATE-0BJ-POWER-LEVEL(x) = 0.0

form Make-NOR-GATE-Names-Unique
unique-names-class(’NOR-GATE-0BJ, true)
%
function NOR-GATE-OBJ-UPDATE1 (subsystem : subsystem-obj,
nor-gate : NOR-GATE-OBJ) =

format(debug-on, "NOR-GATE-OBJ-UPDATE on ~s~%", name(nor-gate));

let (in1 : boolean = get-import(’ini, subsystem, nor-gate),
in2 : boolean = get-import(’in2, subsystem, nor-gate))

set-export(subsystem, nor-gate, ’outi, “(inl or in2))
%

function NOR-GATE-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
nor-gate : NOR-GATE-OBJ) =

format(t, "NOR-GATE-OBJ-NEW-UPDATE on “s~J%", name(nor-gate))

E-6

E.5 Not-Gate

!} in-package("RU")
t1 in-grammar(’user)

%% File name: not-gate.re

var NOT-GATE-0BJ : object-class subtype-of Primitive-Obj

var NOT-GATE-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object{’import-obj),
’import-name, ’ini,
’import-category, ’signal,
?import-type-data, ’boolean)}

var NOT-GATE-OBJ-QUTPUT-DATA : set(export—obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outl,
’export-category, ’signal,
’export-type-data, ’boolean)}

var NOT-GATE-OBJ-COEFFICIENTS : map(NOT-GATE-OBJ, set(name-value-obj))
computed-using

KOT-GATE-0BJ~COEFFICIENTS(x) = {}

var NOT-GATE-OBJ-UPDATE-FUNCTION : map(NOT-GATE-OBJ, symbol)
computed-using
NOT-GATE-OBJ-UPDATE-FUNCTION(x) = ’NOT-GATE-OBJ-UPDATE1

% Other Attributes:

var NOT-GATE-OBJ-DELAY : map(NOT-GATE-OBJ, integer)
computed-using
HOT-GATE-O0BJ-DELAY(x) = 0

var NOT-GATE-OBJ-MANUFACTURER : map(NOT-GATE-OBJ, string)
computed-using
NOT-GATE-OBJ-MANUFACTURER(x) = " "

var NOT-GATE-OBJ-MIL-SPEC? : map(NOT-GATE-OBJ, boolean)
computed-using
NOT-GATE-O0BJ-MIL-SPEC?(x) = mnil

var NOT-GATE-OBJ-POWER-LEVEL : map(NOT-GATE-OBJ, real)
computed-using
NOT-GATE-OBJ-POWER-LEVEL(x) = 0.0

form Make-NOT-GATE-Names-Unique
unique-names-class(’K§OT-GATE-OBJ, true)

%

function NOT-GATE-OBJ-UPDATE1 (subsystem : subsystem-obj,
not-gate : NOT-GATE-OBJ) =

format (debug-on, "NOT-GATE-OBJ-UPDATE on “s~%", name(not-gate));
let (inl : boolean = get-import(’ini, subsystem, not-gate))

set-export(subsystem, not-gate, ’outl, “(in1))
[}
%

function NOT-GATE-OBJ-REW-~UPDATE (subsystem : subsystem-obj,
not-gate : NOT-GATE-OBJ) =

format(t, "NOT-GATE-OBJ-NEW-UPDATE on “s~%", name(not-gate))

E.6 JK-Flip-Flop

't in-package("RU")
!! in-grammar(’user)

%% File name: jk~flip-flop.re
var JK-FLIP-FLOP-0BJ : object-class subtype-of Primitive-Obj

var JK-FLIP-FLOP-OBJ-INPUT-DATA : set(import-obj) =

{set-attrs (make-object(’import-obj),
‘import-name, ’J,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’K,
’import-category, ’signal,
*import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
?import-name, ’Clk,
’import-category, ’signal,
’import-type-data, ’boolean)}

var JK-FLIP-FLOP-OBJ-OUTPUT-DATA : set(export-obj) =

{set-attrs (make-object(’export-obj),
’export-name, ’Q,
’export-category, ’signal,
’export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export-name, ’Q-Bar,
’export-category, ’'signal,
’export-type-data, ’boolean)}

E-8&

var JK-FLIP-FLOP-OBJ~COEFFICIENTS : map(JK-FLIP-FLOP-0BJ, set(name-value-obj))
computed-using
JK-FLIP-FLOP-0OBJ-COEFFICIENTS(x) = {}

var JK-FLIP-FLOP-OBJ~UPDATE-FUNCTION : map(JK-FLIP-FLOP-0BJ, symbol)
computed-using
JK-FLIP-FLOP-0BJ-UPDATE-FUNCTION(x) = ’JK-FLIP-FLOP-0BJ-UPDATE1

% Other Attributes:
var JK-FLIP-FLOP-O0BJ-DELAY : map(JK-FLIP-FLOP-OBJ, integer)
computed-using
JK-FLIP-FLOP-OBJ-DELAY(x) = 0

var JK-FLIP-FLOP-OBJ-MANUFACTURER : map(JK-FLIP-FLOP-0BJ, string)
computed-using
JK-FLIP-FLOP-OBJ-MANUFACTURER(x) = " *

var JK-FLIP-FLOP-OBJ-MIL~SPEC? : map(JK-FLIP-FLOP-0BJ, boolean)
computed-using
JK-FLIP-FLOP-OBJ-MIL-SPEC?(x) = nil

var JK-FLIP-FLOP-OBJ-POWER-LEVEL : map(JK-FLIP-FLOP-0BJ, real)
computed-using
JK-FLIP-FLOP-0BJ-POWER-LEVEL(x) = 0.0

var JK-FLIP-FLOP-OBJ-SET-UP-DELAY : map(JK-FLIP-FLOP-0BJ, integer)
computed-using
JK-FLIP-FLOP-OBJ~SET-UP-DELAY(x) = O

var JK-FLIP-FLOP-OBJ-HOLD-DELAY : map(JK-FLIP-FLOP-0BJ, real)
computed-using
JK-FLIP-FLOP-OBJ-HOLD-DELAY(x) = 0.0

var JK-FLIP-FLOP-0BJ-STATE : map(JK-FLIP-FLOP-0BJ, boolean)
computed-using
JK-FLIP-FLOP-0BJ-STATE(x) = nil

form Make-JK-FLIP-FLOP-Names-Unique
unique-names-class(’JK-FLIP-FLOP-0BJ, true)

%

function JK~-FLIP-FLOP-0BJ-UPDATE1 (subsystem : subsystem-obj,
jk-flip-flop : JK-FLIP-FLOP-0BJ) =

format (debug-on, "JK-FLIP-FLOP-OBJ-UPDATE on ~s8°%", name(jk-flip-flop));

let (j : boolean = get-import(’J, subsystem, jk-flip-~flop),

E-9

k : boolean
clk : boolean

get-import(’K, subsystem, jk-flip-flop),
get-import(’Clk, subsystem, jk-flip-flop))

(it “j & k & clk then
JK-FLIP-FLOP-OBJ-STATE(jk-f1ip-flop) <- nil

elseif j & k & clk then
JR-FLIP-FLOP-0BJ-STATE(jk-f1lip-flop) <-
- JK-FLIP-FLOP-0BJ-STATE(jk-f1lip-£lop)
elseif j & "k & clk then
JK-FLIP-FLOP-OBJ-STATE(jk-flip-flop) <- true
);
set-export(subsystem, jk~flip-flop, ’Q,
JK-FLIP-FLOP-0BJ~STATE(jk-flip-flop));
set-export(subsyatem, jk~flip-flop, ’Q-Bar,
~JK-FLIP-FLOP-0BJ-STATE(jk-f1ip-flop))
%

function JK-FLIP-FLOP-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
jk-flip-flop : JK-FLIP-FLOP-0BJ) =

format(t, "JK-FLIP-FLOP-OBJ-NEW-UPDATE on “s~%", name(jk-flip-flop))

E.7 switch

11 in-package("RU")
!t in-grammar(’user)

%% File name: switch.re
var SWITCH-OBJ : object-class subtype-of Primitive-Obj
var SWITCH-OBJ-INPUT-DATA : set(import-obj) = {}

var SWITCH-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outl,
’export-category, ’signal,
’export-type-data, ’boolean)}

var SWITCHE-OBJ~COEFFICIENTS : map(SWITCH-OBJ, set(name-value-obj))

computed-using
SWITCH-0BJ-COEFFICIENTS(x) = {}

var SWITCH-0BJ-UPDATE-FUNCTION : map(SWITCH-OBJ, symbol)
computed-using

E-10

SWITCB-0BJ~-UPDATE-FUNCTION(x) = ’SWITCH-O0BJ-UPDATE1

% Other Attributes:

var SWITCH-OBJ-MANUFACTURER : map(SWITCH-OBJ, string)
computed-using
SWITCH-OBJ-MANUFACTURER(x) = " "

var SWITCH-OBJ-DEBOUNCED : map(SWITCH-OBJ, boolean)
computed-using
SWITCE-OBJ-DEBOUNCED(x) = nil

var SWITCH-OBJ-DELAY : map(SWITCH-OBJ, integer)
computed-using
SWITCH-0BJ-DELAY(x) = O

var SWITCH-OBJ-POSITION : map(SWITCH-OBJ, symbol)
computed-using
SWITCH-OBJ-POSITION(x) = ’on

form Make-SWITCH-Names-Unique
unique-names-class(’SWITCH-0BJ, true)

%

function SWITCH-0BJ-UPDATE1 (subsystem : subsystem-obj,
switch : SWITCH-O0BJ) =

format{debug-on, "SWITCH-GATE-OBJ-UPDATE on “s8~%", name(switch));
let (signal : boolean = nil)
(if SWITCE-0BJ-POSITION(switch) = ’ON then
signal <- true
);

set-export(subsystem, switch, ’outl, signal)
%

function SWITCH-OBJ-NEW-UPDATE (subsystem : subsystem-obj,
switch : SWITCH-OBJ) =

format(t, "SWITCH-OBJ-NEW-UPDATE on ~“s"%", name(switch))

E.8 LED

¢! in-package("RU")
! jn-grammar(’user)

E-11

%% File name: led.re
var LED-OBJ : object-class subtype-of Primitive-0bj

var LED-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
'import-name, ’ini,
’import-category, ’signal,
’import-type~data, ’boolean)}

var LED-OBJ-OUTPUT-DATA : set(export-obj) = {}

var LED-OBJ-COEFFICIENTS : map(LED-0BJ, set(name-value-obj))
computed-using
LED-0BJ-COEFFICIENTS(x) = {}

var LED-OBJ-UPDATE-FUNCTION : map(LED-OBJ, symbol)
computed-using
LED-0BJ-UPDATE-FUNCTION(x) = ’LED-0BJ-ON-OFF-UPDATE

% Other Attributes:

var LED-OBJ-MANUFACTURER : map(LED-0BJ, string)
computed-using
LED-OBJ-MANUFACTURER(x) = " "

var LED-OBJ-COLOR : map(LED-0BJ, symbol)
computed-using
LED-OBJ-COLOR(x) = ’red

form Make-LED-Names-Unique
unique-names-class(’LED-0BJ, true)

%

function LED-OBJ-ON-OFF-UPDATE (subsystem : subsystem-obj,
led : LED-0BJ) =

format (debug-on, "LED-0BJ-ON-OFF-UPDATE on “8~%", name(led));
let (display-value : symbol = ’off)

(if get-import(’ini, subsystem, led) then
display-value <- ’on
);
format(t, "LED “s = “8~%", name(led), display-value)
%

function LED-0BJ-T-F-UPDATE (subsystem : subsystem—-obj,
led : LED-OBJ) =

format (debug-on, "LED-OBJ-T-F-UPDATE on “s~%", name(led));

E-12

let (display-value : symbol = ’false)

(if get-import(’ini, subsystem, led) then
display-value <- ’true

)i

format(t, "LED “s = "s~%", name(led), display-value)

E.9 Counter

't in-package("RU")
!1 in-grammar(’user)

%% File name: counter.re
var COUNTER-O0BJ : object-class subtype-of Primitive-Obj

var COUNTER-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’clock,
‘import-category, ’signal,
import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’reset,
’import-category, ’signal,
’import-type-data, ’boolean)}

var COUNTER-0BJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’lsb,
’export-category, ’signal,
’export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export-name, ’msb,
’export-category, ’sigmal,
*export-type-data, ’boolean)}

var COUNTER-OBJ-COEFFICIENTS : map(COUNTER-0BJ, set(name-value-obj))
computed-using
COUNTER-OBJ-COEFFICIERTS(x) =
{set-attrs (make-object(’name-value-obj), ’name-value-name, ’max-count,
‘name-value-value, 3)}

E-13

var COUNTER-OBJ-UPDATE-FUNCTION : map(COUNTER-OBJ, symbol)
computed-using
COUNTER-OBJ-UPDATE-FUNCTION(x) = ’COUNTER-OBJ-UPDATE1

% Other Attributes:

var COUNTER-DBJ-COUNT : map(COUNTER-OBJ, integer)
computed-using
COUNTER-OBJ-COURT(x) = 0

var COUNTER-OBJ-DELAY : map(COUNTER-0BJ, integer)
computed-using
COUNTER-OBJ-DELAY(x) = 0

var COUNTER-OBJ-MANUFACTURER : map(COUNTER-OBJ, string)
computed-using
COUNTER-OBJ-MANUFACTURER(x) = " "

var COUNTER-OBJ-MIL-SPEC? : map(COUNTER-0OBJ, boolean)
computed-using
COUNTER-OBJ-MIL-SPEC?7(x) = nil

var COUNTER-OBJ-POWER-LEVEL : map(COUNTER-OBJ, real)
computed-using

COUNTER-OBJ-POWER-LEVEL(x) = 0.0

form Make-COUNTER-Names-Unique
unique-names-class(’COUNTER-OBJ, true)

%

function COUNTER-OBJ-UPDATE1 (subsystem : subsystem-obj,
counter : COUNTER-OBJ) =

format (debug-on, "COUNTER-OBJ-UPDATE! on "s”%", name(counter));

let (clock : boolean = get-import(’clock, subsystem, counter),
reset : boolean = get—import(’reset, subsystem, counter))

"

(if reset then
COUNTER-OBJ-COUNT (counter) <- 0

elseif clock then
COUNTER-OBJ-COUNT (counter) <- COUNTER-OBJ-COUNT(counter) +1

);

(if COUNTER-OBJ-COURT(counter) >

get-coefficient-value(counter, ’max-count) then

COUNTER-OBJ-COUNT (counter) <- 0

);

if COUNTER-OBJ-COUNT(counter) = O then
set-export(subsystem, counter, ’msb, nil);
set-export(subsystem, counter, ’lsb, nil)

elseif COUNTER-OBJ-COUNT(counter) = 1 then

E-14

set-export (subsystem, counter, ’msb, nil);
set—export(subsystem, counter, ’lsb, true)
elseif COUNTER-OBJ-COUNT(counter) = 2 then
set-export(subsystem, counter, ’msb, true);
set-export(subsystem, counter, ’lsb, nil)
elseif COUNTER-0BJ-COUNT(counter) = 3 then
set-export(subsystem, counter, ’'msb, true);
set—export(subsystem, counter, ’lsb, true)

E.10 Half-Adder

!t in-package("RU")
1! in-grammar(’user)

%% File name: half-adder.re

var HALF-ADDER-0BJ : object—class subtype-of Primitive-Obj

var HALF-ADDER-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’ini,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
?import-name, ’in2,
?import-category, ’signal,
’import-type-data, ’boolean)}

var HALF-ADDER-OBJ-OUTPUT-DATA : set(export-obj) =

{set-attrs (make-object(’export-obj),
’export-name, ’s,
’export-category, ’signal,
’export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
'export-name, ’c,
’export-category, ’signal,
’export-type-data, ’'boolean)}

var HALF-ADDER-OBJ-COEFFICIENTS : map(HALF-ADDER-OBJ, set(name-value-obj))

computed-using
HALF~ADDER-OBJ-COEFFICIENTS(x) = {}

var HALF-ADDER-OBJ-UPDATE~FUNCTION : map(HALF-ADDER-OBJ, symbol)
computed-using

E-15

HALF-ADDER-OBJ-UPDATE-FUNCTION(x) = ’HALF-ADDER-0BJ-UPDATE1

% Other Attributes:
var HALF-ADDER-(03J-DELAY : map(HALF-ADDER-OBJ, integer)
computed-using
HALF-ADDER-OBJ-DELAY(x) = 0

var HALF-ADDER-OBJ-MANUFACTURER : map(HALF-ADDER-0BJ, string)
computed-using
HALF-ADDER-OBJ-MANUFACTURER(x) = " "

var HALF-ADDER-OBJ-MIL-SPEC? : map(HALF-ADDER-0OBJ, boolean)
computed~using
HALF-ADDER-OBJ-MIL-SPEC?(x) = nil

var HALF-ADDER-OBJ-POWER-LEVEL : map(HALF-ADDER-0BJ, real)
computed-using

HALF-ADDER-OBJ-POWER-LEVEL(x) = 0.0

form Make-HALF-ADDER-Kames-Unique
unique-names-class(’HALF-ADDER-0BJ, true)

%

function HALF-ADDER-OBJ-UPDATE1 (subsystem : subsystem-obj,
half-adder : HALF-ADDER-OBJ) =

let (in1 : boolean = get-import(’ini, subsystem, half-adder),
in2 : boolean = get-import(’in2, subsystem, half-adder))

L

if “ini and “in2 then
set-export(subsystem, half-adder, ’s, nil);
set-export (subsystem, half-adder, ’c, nil)
elseif inl and “in2 then
set-export(subsystem, half-adder, ’s, true);
set-export(subsystem, half-adder, ’c, nil)
elseif “inl and in2 then
set—export(subsystem, half-adder, ’s, true);
set-export(subsystem, half-adder, ’c, nil)
elseif ini and in2 then
set-export(subsystem, half-adder, ’s, nil);
set-export(subsystem, half-adder, ’c, true)

E.11 Decoder

!! in-package("RU")
1! in-grammar(’user)

E-16

%% File name: decoder.re
var DECODER-0BJ : object-class subtype-of Primitive-Obj

var DECODER-OBJ-INPUT-DATA : set(import-obj) =
{set-attrs (make-object(’import-obj),
’import-name, ’ini,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
'import-name, ’in2,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’in3,
’import-category, ’signal,
’import-type-data, ’boolean)}

var DECODER-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’mO,
’export-category, ’'signal,
’export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export-name, ’mi,
'export-category, ’signal,
’export-type-data, ’'boolean),

set~attrs (make-object(’export-obj),
’export-name, ’'m2,
'export-category, 'signal,
'export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export-name, ‘m3,
'export-category, ’signal,
’export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export—name, ’m4,
’export-category, ’'signal,
'export-type-data, ’boolean),

set-attrs (make-object(’export-obj),
’export-name, ’'m5,
’export-category, ’signal,
’export-type-data, ’boolean),

E-17

set-attrs (make-object(’export-obj),
’export-name, ’m6,
'export-category, ’signal,
'export-type-data, ’boolean),

set-attrs (make—object{’export-obj),
’export-name, ’m7,
’export-category, ’signal,
) export-type-data, ’boolean)}

var DECODER-OBJ-COEFFICIENTS : map(DECODER-OBJ, set(name-value-obj))
computed-using
DECODER-OBJ-COEFFICIENTS(x) = {}

var DECODER-OBJ-UPDATE-FUNCTION : map(DECODER-OBJ, symbol)
computed-using
DECODER-0BJ-UPDATE-FUNCTION(x) = °'DECODER-0BJ-UPDATE1

% Other Attributes:
var DECODER-OBJ-DELAY : map(DECODER-OBJ, integer)
computed-using
DECODER-OBJ-DELAY(x) = 0

var DECODER-OBJ-MANUFACTURER : map(DECODER-0BJ, string)
computed-using
DECODER-0BJ-MANUFACTURER(x) = " "

var DECODER-QOBJ-MIL~SPEC? : map(DECODER-0BJ, boolean)
computed-using
DECODER-0BJ-MIL-SPEC?(x) = nil

var DECODER-OBJ-POWER-LEVEL : map(DECODER-OBJ, real)
computed-using

DECODER-0BJ-POWER-LEVEL(x) = 0.0

form Make-DECODER-Names-Unique
unique-names-class(’DECODER-0BJ, true)

%

function DECODER-OBJ-UPDATE1 (subsystem : subsystem-obj,
decoder : DECODER-O0BJ) =

let (x : boolean = get-import(’ini, subsystem, decoder),
y : boolean = get-import(’in2, subsystem, decoder),
z : boolean = get-import(’in3, subsystem, decoder))

% set all outputs to false to start; don’t want any left-over
% values adversely affecting output.

set-export(subsystem, decoder, 'm0, nil);

E-18

set-export(subsystem, decoder,
set-export(subsystem, decoder,
set-export(subsystem,
set-export{subsystem, decoder,
set-export(subsystem, decoder,
set-export(subsystem, decoder,
set-export(subsysten,

nil);
nil);
nil);
nil);
nil);
nil);
nil);

‘mi,
‘m2,
'm3,
‘m4,
‘mb,
‘m6,
‘m7,

decoder,

decoder,

if “x and "y and "z then
set-export(subsystem, decoder,
elseif “x and "y and z then
set-export(subsystem, decoder,
elseif “x and y and "z then
set-export(subsystem, decoder,
elseif “x and y and z then
set-export (subsystem, decoder,
elseif x and "y and “z then
set-export (subsystem, decoder,
elseif x and "y and z then
set—export(subsystem, decoder,

‘'m0, true)

‘mi, true)
'm2, true)
'm3, true)
‘m4, true)

‘mb, true)

elseif x and y and "z then

set-export(subsystem, decoder,

‘m6, true)

elseif x and y and z then

set-export(subsystem, decoder,

E.12 MUX

‘m7, true)

't in-package("RU")
!! in-grammar(’user)

%% File name:

var MUX-OBJ

var MUX-OBJ-INPUT-DATA

mux.re
: object-class subtype-of Primitive-0bj

: set(import-obj) =

{set-attrs (make-object(’import-obj),

?import-name, ’in0,
'import-category, ’signal,
’import-type—data, ’boolean),

set-attrs (make-object(’import-obj),

’import-name, ’ini,
'import-category, ’signal,
’import-type~data, ’boolean),

set-attrs (make-object(’import-obj),

’import-name, ’in2,
'import-category, ’signal,

E-19

’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’in3,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import-name, ’s0,
’import-category, ’signal,
’import-type-data, ’boolean),

set-attrs (make-object(’import-obj),
’import—-name, ’si,
’import-category, ’signal,
import-type-data, ’boolean)}

var MUX-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object(’export-obj),
’export-name, ’outi,
’export-category, ’signal,
’export-type-data, ’boolean)}

var MUX-OBJ-COEFFICIENTS : map(MUX-OBJ, set(name-value-obj))
computed-using
MUX-0BJ-COEFFICIENTS(x) = {}

var MUX-0BJ-UPDATE-FUNCTION : map(MUX-OBJ, symbol)
computed-using
MUX-0BJ-UPDATE-FUNCTION(x) = ’‘MUX-OBJ-UPDATE1

% Other Attributes:

var MUX-OBJ-DELAY : map(MUX-OBJ, integer)
computed-using
MUX-0BJ-DELAY(x) = 0

var MUX-OBJ-MANUFACTURER : map(MUX-0BJ, string)
computed-using
MUX-OBJ-MANUFACTURER(x) = " "

var MUX-OBJ-MIL-SPEC? : map(MUX-0BJ, boolean)
computed-using
MUX-0BJ-MIL-SPEC?(x) = nil

var MUX-OBJ-POWER-LEVEL : map(MUX-0BJ, real)
computed-using
MUX-0OBJ-POWER-LEVEL(x) = 0.0

form Make-MUX-Names-Unique
unique-names-class(’MUX-0BJ, true)

E-20

%

function MUX-OBJ-UPDATEiL (subsystem : subsystem-obj,
mux : MUX-0BJ) =

let (80 : boolean = get-import(’s0, subsystem, mux),
s1 : boolean = get-import(’si, subsystem, mux))

if “s0 and “si then
set-export(subsystem, mux, ’'outl,
get-import(’in0, subsystem, mux))
elseif s0 and “s1 then
set-export(subsystem, mux, ’outl,
get-import(’in1, subsystem, mux))
elseif “s0 and s1 then
set-export(subsystem, mux, ’outi,
get-import(’in2, subsystem, mux))
elseif s0 and s1 then
set-export(subsystem, mux, ’outil,
get-import(’in3, subsystem, mux))

E-21

Vita

Captain Cynthia G. Anderson was born on 29 July 1955 in Burlington, Vermont and
graduated as valedictorian from Mount Mansfield Union High School in Jericho Center,
Vermont in June, 1972. She enlisted in the Air Force in April 1975 and completed technical
training for computer programming at Sheppard AFB, Texas in September, 1975. After
programming assignments in finance/budget and personnel/training functional areas at
Peterson AFB, Colorado and Randolph AFB. Texas, she was accepted into the Airmen
Education and Commissioning Program and entered the University of Oklahoma at Nor-
man, Oklahoma in August, 1980. Upon graduating with special distinction and a Bachelor
of Science in Computer Science degree in December 1982, she attended Officer Training
School and received her commission as first honor graduate on 1 April 1983. As a new
lieutenant, she was assigned to Tinker AFB, Oklahoma where she maintained the AWACS
airborne operational computer program software and later was responsible for development
test and evaluation of all new software versions. She was reassigned to Lowry AFB, Col-
orado in July 1988 and managed software configuration control for a world-wide satellite
communicatjons system. In May 1991, Captain Anderson entered the Air Force Institute
of Technology at Wright-Patterson AFB, Ohio to pursue a Master of Science degree in

Computer Systems.

Permanent address: 2800 Lamb Blvd #274
Las Vegas Nevada 89121

VITA-1

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bibliography

. Arango, Guillermo. “Domain Analysis: Art Form to Engineering Discipline,” ACM , 152-159

(January 1989).

. Bailor, Paul D. and others. “Formalization and Visualization of Domain-Specific Software

Architectures (submitted for publication),” (1992).

. Baldo, James. Reuse in Practice Workshop Summary. Technical Report, Institute for Defense

Analysis, April 1990 (AD-A226 895).

. Barstow, David R. “Domain-Specific Automatic Programming,” IEEE Transactions on Soft-

ware Engineering, 11:1321- 1326 (November 1985).

. Batory, Don and Sean O’Malley. The Design and Implementation of Hierarchical Software

Systems with Reusable Componenis. Technical Report TR-91-22, Austin, Texas: University
of Texas, January 1992.

. Booch, Grady. Software Engineering With Ada, Second Edition. Menlo Park, CA: The Ben-

Jamin/Cummings Publishing Company, Inc, 1987.

. Booth, Guy R. Implementation of an Object-Oriented Flight Simulator D.C. Elecirical System

on a Hypercube Architecture. MS thesis, AFIT/GCE/ENG/91D-01, School of Engineering, Air
Force Institute of Technology(AU), Wright-Patterson AFB, OH, December 1991.

. Breeding, Kenneth J. Digital Design Fundamentals. Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1989.

. Brooks, Frederick P., Jr. “No Silver Bullet — Essence and Accidents of Software Engineering,”

IEEE Computer, 10-19 (April 1987).

D’Ippolito, Richard and Kenneth Lee. “Modeling Software Systems by Domains.” Tenth
Automating Software Design Workshop. American Association for Artificial Intelligence, April
1992.

D’Ippolito, Richard S. “Using Models in Software Engineering.” Proceedings: TRI-Ada ’89.
256-265. New York, NY: Association of Computing Machinery, Inc., 1989.

D’Ippolito, Richard S. and Charles P. Plinta. “Software Development Using Models,” ACM
Sigsoft Software Engineering Notes (October 1989).

Fischer, Charles N. and Richard J. LeBlanc, Jr. Crafting a Compiler with C. Redwood City,
CA: Benjamin/Cummings Publishing Company, Inc, 1991.

Frakes, W. B. “Representation Methods for Software Reuse.” Proceedings: TRI-Ada ’'89.
500-516. New York, NY: Association of Computing Machinery, Inc., 1989.

Freeman, Peter, editor. Tutorial: Software Reusability. Washington, D.C.: Computer Society
Press of the IEEE, 1987.

Greenspan, Sol J. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Definition. PhD dissertation, University of Toronto, Toronto, Ontario, Canada,
1984.

Holibaugh, Robert. “Reuse: Where to Begin and Why.” Reuse in Practice Workshop Sum-
mary, edited by James Baldo. 74-79. 1990.

Iscoe, Neil. “Domain Modeling - Evolving Research.” Proceedings of the Sizth Annual
Knowldege-Based Software Engineering Conference. 300 - 304. 1991.

BIB-1

19.

20.

2].

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.
36.

Iscoe, Neil Allen. Domain-Specific Programming: An Object-Oriented and Knowledge-based
Approach to Specification and Generation. PhD dissertation, The University of Texas at
Austin, Austin Texas, 1990.

Kang, Kyo C. and others. Feature-Oriented Domain Analysis (FODA) Feasibility Study. ">
nical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990 (AD-A%35
785).

Korth, Henry F. and Abraham Silberschatz. Database System Concepls, 2nd edition. New
York, NY: McGraw-Hill, Inc., 1991.

Lane, Thomas G. Studying Software Architectures through Design Spaces and Rules. Technical
Report CMU/SEI-90-TR-18, Software Engineering Instituie, November 1990.

Lee, Kenneth J. and others. An OOD Paradigm for Flight Simulators, Second Edition. Tech-
nical Report CMU/SEI-88-TR-30, Software Engineering Institute, September 1988 (AD-A204
849).

Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical Report
CMU/SEI-92-SR-00, Software Engineering Institute, December 1991.

Lockheed Software Technology Center. Software User’s Manual for the Automatic Program-
ming Technologies For Avionics Software (APTAS) System. 'Technical Report, Palo Alto, CA:
Lockheed Software Technology Center, June 1991.

Lowry, Michael R. “Software Engineering in the Twenty-first Century.” Automating Software
Design, edited by Michael R. Lowry and Robert D. McCartney. 627-654. Menlo Park, CA:
AAAI Press/MIT Press, 1991.

Mano, M. Morris. Computer System Architecture. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1976.

Neighbors, James M. “The Draco Approach to Constructing Software from Reusable Compo-
nents,” JEEE Transactions on Sofiware Engineering, 10:564-574 (September 1984).

Perry, 1. M. and M. Shaw. “The Role of Domain Independence in Promoting Software Reuse,
Architectural Analysis of Systems.” Reuse in Praclice Workshop Summary, edited by James
Baldo. 123-128. 1990.

Peterson, A. Spencer. “Coming to Terms with Software Reuse: A Model-based Approach,”
ACM SIGSOFT Software Engineering Notes, 16:45-51 (April 1991).

Prieto-Dfaz, Rubén. “Domain Analysis: An Introduction,” ACM SIGSOFT Software Engi-
neering Notes, 15:47-54 (April 1990).

Prieto-Diaz, Rubén. “Domain Analysis for Reusability.” Proceedings of the 11th Annual In-
ternational Computer Software and Application Conference. 23-29. IEEE Computer Society
Press, 1990.

Randour, Captain Mary Anne. Creating and Manipulating ¢ Domain Specific Formal Ob-
ject Base. MS thesis, AFIT/GCS/ENG/92D, School of Engineering, Air Force Institute of
Technology(AU), Wright-Patterson AFB, OH, December 1992.

Reasoning Systems, Inc. DIALECT User’s Guide. Palo Alto, CA, July 1990.
Reasoning Systems, Inc. REFINE User’s Guide. Palo Alto, CA, May 1990.

Royce, Walker. “Reliable, Reusable Ada Components for Constructing Large, Distributed
Multi-Task Networks: Network Architecture Services (NAS).” Proceedings: TRI-Ada ’89.
500-516. New York, NY: Association of Computing Machinery, Inc., 1989.

BIB-2

37.

38.

39.

40.

41.

42.
43.

44.

Ruegsegger, Ted. “Making Reuse Pay: The SIDPERS-3 RAPID Center,” IEEE Communica-
tions Magazine, 26, No. §:16-24 (Aug 1988).

Shaw, Mary. “Larger Scale Systems Require Higher-Level Abstractions,” ACM Sigsoft Soft-
ware Engineering Notes, 14, No. 3:143-146 (May 1988).

Smith, Douglas R. “KIDS — A Knowledge-Based Software Development System.” Astomating
Software Design, edited by Michael R. Lowry and Robert D. McCartney. 483-514. Menlo
Park, CA: AAAI Press/MIT Press, 1991.

Spicer, Kelly L. Mapping an Object-Oriented Requirements Analysis to a Design Architecture
that Supports Reuse. MS thesis, AFIT/GCS/ENG/90D, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1990.

Stark, Michael E. and Eric W. Booth. “Using Ada to Maximize Verbatim Software Reuse.”
Proceedings: TRI-Ada ’89. 278-290. New York, NY: Association of Computing Machinery,
Inc., 1989.

Stewart, Jeff. “Software Architectures,” briefing (August 1992).

Tracz, Will. “Summary of Implementation Working Group.” Reuse in Practice Workshop
Summary, edited by James Baldo. 10-19. 1990.

Weide, Lieutenant Timothy. Visualization and Manipulation of a Formal Object Base (Draft).
MS thesis, AFIT/GCS/ENG/93M, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, March 1993.

BIB-3

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Pubhic repc st ~5 Duraen for this coliection of information 1s 8stimated tC average ! hour per resporse, (ncluding the time 10r revIew: N insIrJCLIORs. searcming ex st'ng 0ata sources,
gather.~3 3-2 mai~ta r nj the Cata needed, and compieting and reviewing the collection of information Send comments regarding this burden estimate or an, ther aspect of this
coliectinr ot vt 3rranon, Incuding suggestions tor reducing this burden to Washington Headguarters Services, Directorate for information Operat.ons ana Reperts, 1215 Jetferson
Davis Highway. Suite 1204, 4rlington, VA 22202-4302. and to the Otfice of Management and Budget. Paperwork Reduction Project (3704-0188), washington. DC 20503
1. AGENCY USE ONLY (Leave blank)]2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
CREATING AND MANIPULATING FORMALIZED SOFTWARE AR-
CHITECTURES TO SUPPORT A DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM
6. AUTHOR(S)

Cynthia G. Anderson, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER
1r rorce institute O ecnno. Ogy, AFIT/GCS/ENG/92D_01

9. SPONSORING ' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
ASC/RWWW
Wright-Patterson AFB, OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This research investigated technology which enables sophisticated users to specify, generate, and maintain ap-
plication software in domain-oriented terms. To realize this new technology, a development environment, called
Architect, was designed and implemented. Using canonical formal specifications of domain objects, Architect
rapidly composes these specifications into a software application and executes a prototype of that application as
a means to demonstrate its correctness before any programming language specific code is generated. Architect
depends upon the existence of a formal object base (or domain model) which was investigated by another stu-
dent in related research. The research described in this thesis relied on the concept of a software architecture,
which was a key to Architect’s successful implementation. Various software architectures were evaluated and the
Object-Connection-Update (OCU) model, developed by the Software Engineering Institute, was selected. The
Software Refinery environment was used to implement the composition process which encompasses connecting
specified domain objects into a composed application, performing semantic analysis on the composed application,
and, if no errors are discovered, simulating the execution of the application. Architect was validated using both
artificial and realistic domains and was found to be a solid foundation upon which to build a full-scale application
composition system.

14. SUBJECT TERMS 15. NUMBER OF PAGES
254
16. PRICE CODE

computers, computer programs, software engineering, specifications,
software architecture models, application composition systems,
domain-modeling, domain-speci

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANS. St 239-'8
298-102

